mirror of
https://github.com/triqs/dft_tools
synced 2025-01-10 04:58:19 +01:00
340 lines
12 KiB
Python
340 lines
12 KiB
Python
|
|
################################################################################
|
|
#
|
|
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
#
|
|
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
|
|
#
|
|
# DFT tools: Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
|
#
|
|
# PLOVasp: Copyright (C) 2015 by O. E. Peil
|
|
#
|
|
# TRIQS is free software: you can redistribute it and/or modify it under the
|
|
# terms of the GNU General Public License as published by the Free Software
|
|
# Foundation, either version 3 of the License, or (at your option) any later
|
|
# version.
|
|
#
|
|
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
# details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
################################################################################
|
|
r"""
|
|
vasp.proj_group
|
|
===============
|
|
|
|
Storage and manipulation of projector groups.
|
|
"""
|
|
import numpy as np
|
|
|
|
np.set_printoptions(suppress=True)
|
|
|
|
################################################################################
|
|
################################################################################
|
|
#
|
|
# class ProjectorGroup
|
|
#
|
|
################################################################################
|
|
################################################################################
|
|
class ProjectorGroup:
|
|
"""
|
|
Container of projectors defined within a certain energy window.
|
|
|
|
The constructor selects a subset of projectors according to
|
|
the parameters from the config-file (passed in `pars`).
|
|
|
|
Parameters:
|
|
|
|
- gr_pars (dict) : group parameters from the config-file
|
|
- shells ([ProjectorShell]) : array of ProjectorShell objects
|
|
- eigvals (numpy.array) : array of KS eigenvalues
|
|
|
|
"""
|
|
def __init__(self, gr_pars, shells, eigvals):
|
|
"""
|
|
Constructor
|
|
"""
|
|
self.emin, self.emax = gr_pars['ewindow']
|
|
self.ishells = gr_pars['shells']
|
|
self.ortho = gr_pars['normalize']
|
|
self.normion = gr_pars['normion']
|
|
|
|
self.shells = shells
|
|
|
|
# Determine the minimum and maximum band numbers
|
|
ib_win, ib_min, ib_max = self.select_bands(eigvals)
|
|
self.ib_win = ib_win
|
|
self.ib_min = ib_min
|
|
self.ib_max = ib_max
|
|
self.nb_max = ib_max - ib_min + 1
|
|
|
|
# Select projectors within the energy window
|
|
for ish in self.ishells:
|
|
shell = self.shells[ish]
|
|
shell.select_projectors(ib_win, ib_min, ib_max)
|
|
|
|
|
|
|
|
################################################################################
|
|
#
|
|
# nelect_window
|
|
#
|
|
################################################################################
|
|
def nelect_window(self, el_struct):
|
|
"""
|
|
Determines the total number of electrons within the window.
|
|
"""
|
|
self.nelect = 0
|
|
nk, ns_band, _ = self.ib_win.shape
|
|
rspin = 2.0 if ns_band == 1 else 1.0
|
|
for isp in xrange(ns_band):
|
|
for ik in xrange(nk):
|
|
ib1 = self.ib_win[ik, isp, 0]
|
|
ib2 = self.ib_win[ik, isp, 1]
|
|
occ = el_struct.ferw[isp, ik, ib1:ib2]
|
|
kwght = el_struct.kmesh['kweights'][ik]
|
|
self.nelect += occ.sum() * kwght * rspin
|
|
|
|
return self.nelect
|
|
|
|
################################################################################
|
|
#
|
|
# orthogonalize
|
|
#
|
|
################################################################################
|
|
def orthogonalize(self):
|
|
"""
|
|
Orthogonalize a group of projectors.
|
|
|
|
There are two options for orthogonalizing projectors:
|
|
1. one ensures orthogonality on each site (NORMION = True);
|
|
2. one ensures orthogonality for subsets of sites (NORMION = False),
|
|
as, e.g., in cluster calculations.
|
|
|
|
In order to handle various cases the strategy is first to build a
|
|
mapping that selects appropriate blocks of raw projectors, forms a
|
|
matrix consisting of these blocks, orthogonalize the matrix, and use
|
|
the mapping again to write the orthogonalized projectors back to the
|
|
projector arrays. Note that the blocks can comprise several projector arrays
|
|
contained in different projector shells.
|
|
|
|
The construction of block maps is performed in 'self.get_block_matrix_map()'.
|
|
"""
|
|
# Quick exit if no normalization is requested
|
|
if not self.ortho:
|
|
return
|
|
|
|
block_maps, ndim = self.get_block_matrix_map()
|
|
|
|
_, ns, nk, _, _ = self.shells[0].proj_win.shape
|
|
p_mat = np.zeros((ndim, self.nb_max), dtype=np.complex128)
|
|
# Note that 'ns' and 'nk' are the same for all shells
|
|
for isp in xrange(ns):
|
|
for ik in xrange(nk):
|
|
nb = self.ib_win[ik, isp, 1] - self.ib_win[ik, isp, 0] + 1
|
|
# Combine all projectors of the group to one block projector
|
|
for bl_map in block_maps:
|
|
p_mat[:, :] = 0.0j # !!! Clean-up from the last k-point and block!
|
|
for ibl, block in enumerate(bl_map):
|
|
i1, i2 = block['bmat_range']
|
|
ish, ion = block['shell_ion']
|
|
nlm = i2 - i1 + 1
|
|
shell = self.shells[ish]
|
|
p_mat[i1:i2, :nb] = shell.proj_win[ion, isp, ik, :nlm, :nb]
|
|
# Now orthogonalize the obtained block projector
|
|
ibl_max = i2
|
|
p_orth, overl, eig = self.orthogonalize_projector_matrix(p_mat[:ibl_max, :nb])
|
|
# Distribute projectors back using the same mapping
|
|
for ibl, block in enumerate(bl_map):
|
|
i1, i2 = block['bmat_range']
|
|
ish, ion = block['shell_ion']
|
|
nlm = i2 - i1 + 1
|
|
shell = self.shells[ish]
|
|
shell.proj_win[ion, isp, ik, :nlm, :nb] = p_orth[i1:i2, :nb]
|
|
|
|
################################################################################
|
|
#
|
|
# gen_block_matrix_map
|
|
#
|
|
################################################################################
|
|
def get_block_matrix_map(self):
|
|
"""
|
|
Generates a map from a set of projectors belonging to different shells
|
|
and ions onto a set of block projector matrices, each of which is
|
|
orthonormalized.
|
|
|
|
Returns the map and the maximum orbital dimension of the block projector
|
|
matrix.
|
|
|
|
|
|
Mapping is defined as a list of 'block_maps' corresponding to subsets
|
|
of projectors to be orthogonalized. Each subset corresponds to a subset of sites
|
|
and spans all orbital indices. defined by 'bl_map' as
|
|
|
|
bl_map = [((i1_start, i1_end), (i1_shell, i1_ion)),
|
|
((i2_start, i2_end), (i2_shell, i2_ion)),
|
|
...],
|
|
|
|
where `iX_start`, `iX_end` is the range of indices of the block matrix
|
|
(in Python convention `iX_end = iX_last + 1`, with `iX_last` being the last index
|
|
of the range),
|
|
`iX_shell` and `iX_ion` the shell and site indices. The length of the range
|
|
should be consistent with 'nlm' dimensions of a corresponding shell, i.e.,
|
|
`iX_end - iX_start = nlm[iX_shell]`.
|
|
|
|
Consider particular cases:
|
|
1. Orthogonality is ensured on each site (NORMION = True).
|
|
For each site 'ion' we have the following mapping:
|
|
|
|
block_maps = [bl_map[ion] for ion in xrange(shell.nion)
|
|
for shell in shells]
|
|
|
|
bl_map = [((i1_start, i1_end), (i1_shell, ion)),
|
|
((i2_start, i2_end), (i2_shell, ion)),
|
|
...],
|
|
|
|
2. Orthogonality is ensured on all sites within the group (NORMION = False).
|
|
The mapping:
|
|
|
|
block_maps = [bl_map]
|
|
|
|
bl_map = [((i1_start, i1_end), (i1_shell, i1_shell.ion1)),
|
|
((i1_start, i1_end), (i1_shell, i1_shell.ion2)),
|
|
...
|
|
((i2_start, i2_end), (i2_shell, i2_shell.ion1)),
|
|
((i2_start, i2_end), (i2_shell, i2_shell.ion2)),
|
|
...],
|
|
"""
|
|
if self.normion:
|
|
# Projectors for each site are mapped onto a separate block matrix
|
|
block_maps = []
|
|
ndim = 0
|
|
for ish in self.ishells:
|
|
_shell = self.shells[ish]
|
|
nion, ns, nk, nlm, nb_max = _shell.proj_win.shape
|
|
ndim = max(ndim, nlm)
|
|
for ion in xrange(nion):
|
|
i1_bl = 0
|
|
i2_bl = nlm
|
|
block = {'bmat_range': (i1_bl, i2_bl)}
|
|
block['shell_ion'] = (ish, ion)
|
|
bl_map = [block]
|
|
block_maps.append(bl_map)
|
|
|
|
else:
|
|
# All projectors within a group are combined into one big block matrix
|
|
block_maps = []
|
|
bl_map = []
|
|
i1_bl = 0
|
|
for ish in self.ishells:
|
|
_shell = self.shells[ish]
|
|
nion, ns, nk, nlm, nb_max = _shell.proj_win.shape
|
|
for ion in xrange(nion):
|
|
i2_bl = i1_bl + nlm
|
|
block = {'bmat_range': (i1_bl, i2_bl)}
|
|
block['shell_ion'] = (ish, ion)
|
|
bl_map.append(block)
|
|
i1_bl = i2_bl
|
|
|
|
ndim = i2_bl
|
|
block_maps.append(bl_map)
|
|
|
|
return block_maps, ndim
|
|
|
|
################################################################################
|
|
#
|
|
# orthogonalize_projector_matrix()
|
|
#
|
|
################################################################################
|
|
def orthogonalize_projector_matrix(self, p_matrix):
|
|
"""
|
|
Orthogonalizes a projector defined by a rectangular matrix `p_matrix`.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
p_matrix (numpy.array[complex]) : matrix `Nm x Nb`, where `Nm` is
|
|
the number of orbitals, `Nb` number of bands
|
|
|
|
Returns
|
|
-------
|
|
|
|
Orthogonalized projector matrix, initial overlap matrix and its eigenvalues.
|
|
"""
|
|
# TODO: check the precision of the calculations below,
|
|
# it seems to be inferior to that of Fortran implementation
|
|
# Overlap matrix O_{m m'} = \sum_{v} P_{m v} P^{*}_{v m'}
|
|
overlap = np.dot(p_matrix, p_matrix.conj().T)
|
|
# Calculate [O^{-1/2}]_{m m'}
|
|
eig, eigv = np.linalg.eigh(overlap)
|
|
assert np.all(eig > 0.0), ("Negative eigenvalues of the overlap matrix:"
|
|
"projectors are ill-defined")
|
|
sqrt_eig = 1.0 / np.sqrt(eig)
|
|
shalf = np.dot(eigv * sqrt_eig, eigv.conj().T)
|
|
# Apply \tilde{P}_{m v} = \sum_{m'} [O^{-1/2}]_{m m'} P_{m' v}
|
|
p_ortho = np.dot(shalf, p_matrix)
|
|
|
|
return (p_ortho, overlap, eig)
|
|
|
|
################################################################################
|
|
#
|
|
# select_bands()
|
|
#
|
|
################################################################################
|
|
def select_bands(self, eigvals):
|
|
"""
|
|
Select a subset of bands lying within a given energy window.
|
|
The band energies are assumed to be sorted in an ascending order.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
eigvals (numpy.array) : all eigenvalues
|
|
emin, emax (float) : energy window
|
|
|
|
Returns
|
|
-------
|
|
|
|
ib_win, nb_min, nb_max :
|
|
"""
|
|
# Sanity check
|
|
if self.emin > eigvals.max() or self.emax < eigvals.min():
|
|
raise Exception("Energy window does not overlap with the band structure")
|
|
|
|
nk, nband, ns_band = eigvals.shape
|
|
ib_win = np.zeros((nk, ns_band, 2), dtype=np.int32)
|
|
|
|
ib_min = 10000000
|
|
ib_max = 0
|
|
for isp in xrange(ns_band):
|
|
for ik in xrange(nk):
|
|
for ib in xrange(nband):
|
|
en = eigvals[ik, ib, isp]
|
|
if en >= self.emin:
|
|
break
|
|
ib1 = ib
|
|
for ib in xrange(ib1, nband):
|
|
en = eigvals[ik, ib, isp]
|
|
if en > self.emax:
|
|
break
|
|
else:
|
|
# If we reached the last band add 1 to get the correct bound
|
|
ib += 1
|
|
ib2 = ib - 1
|
|
|
|
assert ib1 <= ib2, "No bands inside the window for ik = %s"%(ik)
|
|
|
|
ib_win[ik, isp, 0] = ib1
|
|
ib_win[ik, isp, 1] = ib2
|
|
|
|
ib_min = min(ib_min, ib1)
|
|
ib_max = max(ib_max, ib2)
|
|
|
|
return ib_win, ib_min, ib_max
|
|
|
|
|