mirror of
https://github.com/triqs/dft_tools
synced 2024-11-01 11:43:47 +01:00
257bdb9d6a
gf: security in the case beta<0 added in the mesh construction gf: inline added in slice test/triqs/gf: test of on_mesh() added gfs: scalar for two-real_times test/triqs/gf/ renamed in gfs, test gf_retw.cpp completed gfs: evaluator homogeneised two_times: evaluator corrected test/triqs/gf/ renamed in gfs, test gf_retw.cpp completed + Correction after rebase Fix a test : gf_re_im_freq_time There is an issue with the last point. To be fixed.
83 lines
2.7 KiB
C++
83 lines
2.7 KiB
C++
#define TRIQS_ARRAYS_ENFORCE_BOUNDCHECK
|
|
|
|
#include <triqs/gfs/re_im_freq.hpp>
|
|
#include <triqs/gfs/re_im_time.hpp>
|
|
#include <triqs/gfs/refreq_imtime.hpp>
|
|
|
|
#include <triqs/gfs/local/fourier_real.hpp>
|
|
#include <triqs/arrays.hpp>
|
|
|
|
namespace tql= triqs::clef;
|
|
using namespace triqs::gfs;
|
|
|
|
int main() {
|
|
|
|
double precision=10e-9;
|
|
double beta =1.;
|
|
|
|
double tmin=0.;
|
|
double tmax=1.0;
|
|
int n_re_time=100;
|
|
int n_im_time=100;
|
|
|
|
double wmin=0.;
|
|
double wmax=1.0;
|
|
int n_re_freq=100;
|
|
int n_im_freq=100;
|
|
|
|
auto G_t_tau= make_gf<re_im_time, scalar_valued>( tmin, tmax, n_re_time, beta, Fermion, n_im_time);
|
|
auto G_w_wn = make_gf<re_im_freq, scalar_valued>( wmin, wmax, n_re_freq, beta, Fermion, n_im_freq);
|
|
auto G_w_tau= make_gf<refreq_imtime, scalar_valued>(wmin, wmax, n_re_freq, beta, Fermion, n_im_time);
|
|
auto G_w= make_gf<refreq, scalar_valued>(wmin, wmax, n_re_freq);
|
|
|
|
triqs::clef::placeholder<0> w_;
|
|
triqs::clef::placeholder<1> wn_;
|
|
triqs::clef::placeholder<2> tau_;
|
|
G_w_wn(w_,wn_)<<1/(wn_-1)/( pow(w_,3) );
|
|
G_w_tau(w_,tau_)<< exp( -2*tau_ ) / (w_*w_ + 1 );
|
|
|
|
int index = n_re_freq/3;
|
|
double tau = std::get<1>(G_w_tau.mesh().components())[index];
|
|
|
|
//identical functions
|
|
G_w(w_) << exp( -2*tau ) / (w_*w_ + 1 );
|
|
//the singularity must be removed as it is inexistent in re_im_time, to give the same TF.
|
|
G_w.singularity()(0)=triqs::arrays::matrix<double>{{0}};
|
|
G_w.singularity()(1)=triqs::arrays::matrix<double>{{0}};
|
|
G_w.singularity()(2)=triqs::arrays::matrix<double>{{0}};
|
|
auto G_w2 = slice_mesh_imtime(G_w_tau, index);
|
|
for(auto& w:G_w.mesh())
|
|
if ( std::abs(G_w(w)-G_w2(w)) > precision) TRIQS_RUNTIME_ERROR<<" fourier_slice error : w="<< w <<" ,G_w="<< G_w(w)<<" ,G_w2="<< G_w2(w) <<"\n";
|
|
|
|
//test of the interpolation
|
|
std::cout << G_t_tau(0.789,0.123) << std::endl;
|
|
std::cout << G_w_wn( 0.789,0.123) << std::endl;
|
|
std::cout << G_w_tau(0.789,0.123) << std::endl;
|
|
|
|
//test of on_mesh()
|
|
std::cout << G_w_tau.on_mesh(n_re_freq/2,n_im_time/3) << std::endl;
|
|
|
|
// test hdf5
|
|
H5::H5File file("gf_re_im_freq_time.h5", H5F_ACC_TRUNC );
|
|
h5_write(file, "g_t_tau", G_t_tau);
|
|
h5_write(file, "g_w_wn", G_w_wn);
|
|
h5_write(file, "g_w_tau", G_w_tau);
|
|
|
|
|
|
// try to slice it
|
|
auto gt = slice_mesh_imtime(G_t_tau, 1);
|
|
h5_write(file, "gt0", gt);
|
|
auto gw = slice_mesh_imtime(G_w_tau, 1);
|
|
h5_write(file, "gw0", gw);
|
|
|
|
//comparison of the TF of the one time and sliced two times GF's
|
|
auto G_t = inverse_fourier(G_w);
|
|
|
|
auto G_t2 = inverse_fourier(slice_mesh_imtime(G_w_tau, index) );
|
|
for(auto& t:G_t.mesh())
|
|
{
|
|
// BUG HERE the last point is badly rounded
|
|
if ( (t< G_t.mesh().size()-1) && (std::abs(G_t(t)-G_t2(t)) > precision)) TRIQS_RUNTIME_ERROR<<" fourier_slice_re_time error : t="<< t <<" ,G_t="<< G_t(t) <<" ,G_t2="<< G_t2(t) <<"\n";
|
|
}
|
|
}
|