3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-09 07:33:47 +01:00
dft_tools/doc/Ce-gamma.py
Priyanka Seth abd087e674 Tidying up
* Replace <<= with <<
* Reordering in put_Sigma
* Remove all instances of wien2triqs in doc
2014-11-05 15:55:55 +01:00

172 lines
5.5 KiB
Python

from pytriqs.applications.dft.sumk_lda import *
from pytriqs.applications.dft.converters.wien2k_converter import *
from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver
lda_filename = 'Ce-gamma'
beta = 40
U_int = 6.00
J_hund = 0.70
Loops = 2 # Number of DMFT sc-loops
Mix = 0.7 # Mixing factor in QMC
# 1.0 ... all from imp; 0.0 ... all from Gloc
DC_type = 0 # 0...FLL, 1...Held, 2... AMF, 3...Lichtenstein
useBlocs = False # use bloc structure from LDA input
useMatrix = True # use the U matrix calculated from Slater coefficients instead of (U+2J, U, U-J)
Natomic = 1
HDFfilename = lda_filename+'.h5'
use_val= U_int * (Natomic - 0.5) - J_hund * (Natomic * 0.5 - 0.5)
# Convert DMFT input:
# Can be commented after the first run
Converter = Wien2kConverter(filename=lda_filename)
Converter.convert_dmft_input()
#check if there are previous runs:
previous_runs = 0
previous_present = False
if mpi.is_master_node():
ar = HDFArchive(HDFfilename,'a')
if 'iterations' in ar:
previous_present = True
previous_runs = ar['iterations']
else:
previous_runs = 0
previous_present = False
del ar
mpi.barrier()
previous_runs = mpi.bcast(previous_runs)
previous_present = mpi.bcast(previous_present)
# Init the SumK class
SK=SumkLDA(hdf_file=lda_filename+'.h5',use_lda_blocks=False)
Norb = SK.corr_shells[0][3]
l = SK.corr_shells[0][2]
# Init the Solver:
S = Solver(beta = beta, l = l)
if (previous_present):
# load previous data:
mpi.report("Using stored data for initialisation")
if (mpi.is_master_node()):
ar = HDFArchive(HDFfilename,'a')
S.Sigma << ar['SigmaImFreq']
del ar
S.Sigma = mpi.bcast(S.Sigma)
SK.load()
# DMFT loop:
for Iteration_Number in range(1,Loops+1):
itn = Iteration_Number + previous_runs
# put Sigma into the SumK class:
SK.put_Sigma(Sigma_imp = [ S.Sigma ])
# Compute the SumK, possibly fixing mu by dichotomy
if SK.density_required and (Iteration_Number > 0):
Chemical_potential = SK.find_mu( precision = 0.01 )
else:
mpi.report("No adjustment of chemical potential\nTotal density = %.3f"%SK.total_density(mu=Chemical_potential))
# Density:
S.G << SK.extract_G_loc()[0]
mpi.report("Total charge of Gloc : %.6f"%S.G.total_density())
dm = S.G.density()
if ((Iteration_Number==1)and(previous_present==False)):
SK.set_dc( dens_mat=dm, U_interact = U_int, J_hund = J_hund, orb = 0, use_dc_formula = DC_type, use_val=use_val)
# set atomic levels:
eal = SK.eff_atomic_levels()[0]
S.set_atomic_levels( eal = eal )
# update hdf5
if (mpi.is_master_node()):
ar = HDFArchive(HDFfilename,'a')
ar['Chemical_Potential%s'%itn] = Chemical_potential
del ar
# solve it:
S.solve(U_int = U_int, J_hund = J_hund, verbosity = 1)
if (mpi.is_master_node()):
ar = HDFArchive(HDFfilename)
ar['iterations'] = itn
# Now mix Sigma and G:
if ((itn>1)or(previous_present)):
if (mpi.is_master_node()and (Mix<1.0)):
mpi.report("Mixing Sigma and G with factor %s"%Mix)
if ('SigmaImFreq' in ar):
S.Sigma << Mix * S.Sigma + (1.0-Mix) * ar['SigmaImFreq']
if ('GF' in ar):
S.G << Mix * S.G + (1.0-Mix) * ar['GF']
S.G = mpi.bcast(S.G)
S.Sigma = mpi.bcast(S.Sigma)
if (mpi.is_master_node()):
ar['SigmaImFreq'] = S.Sigma
ar['GF'] = S.G
# after the Solver has finished, set new double counting:
dm = S.G.density()
SK.set_dc( dm, U_interact = U_int, J_hund = J_hund, orb = 0, use_dc_formula = DC_type , use_val=use_val)
# correlation energy calculations:
correnerg = 0.5 * (S.G * S.Sigma).total_density()
mpi.report("Corr. energy = %s"%correnerg)
if (mpi.is_master_node()):
ar['correnerg%s'%itn] = correnerg
ar['DCenerg%s'%itn] = SK.dc_energ
del ar
#Save stuff:
SK.save()
if (mpi.is_master_node()):
print 'DC after solver: ',SK.dc_imp[SK.invshellmap[0]]
# do some analysis:
mpi.report("Orbital densities of impurity Green function:")
dm1 = S.G.density()
for s in dm1:
mpi.report("Block %s: "%s)
for ii in range(len(dm1[s])):
str = ''
for jj in range(len(dm1[s])):
if (dm1[s][ii,jj].real>0):
str += " %.4f"%(dm1[s][ii,jj].real)
else:
str += " %.4f"%(dm1[s][ii,jj].real)
mpi.report(str)
mpi.report("Total charge of impurity problem : %.6f"%S.G.total_density())
# find exact chemical potential
if (SK.density_required):
SK.chemical_potential = SK.find_mu( precision = 0.000001 )
dN,d = SK.calc_density_correction(filename = lda_filename+'.qdmft')
mpi.report("Trace of Density Matrix: %s"%d)
#correlation energy:
if (mpi.is_master_node()):
ar = HDFArchive(HDFfilename)
itn = ar['iterations']
correnerg = ar['correnerg%s'%itn]
DCenerg = ar['DCenerg%s'%itn]
del ar
correnerg -= DCenerg[0]
f=open(lda_filename+'.qdmft','a')
f.write("%.16f\n"%correnerg)
f.close()