3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-27 06:43:40 +01:00
dft_tools/test/triqs/gfs/g_k_om2.cpp
Olivier Parcollet e1c113b745 Fix g(k,om) for tests
- evaluator
- G(k,tau) is real
- partial_eval for matrix_valued functions
- details : simplifying traits (using decay_t)
2014-02-26 16:24:51 +01:00

76 lines
2.1 KiB
C++

#define TRIQS_ARRAYS_ENFORCE_BOUNDCHECK
#include <triqs/gfs.hpp>
#include <triqs/gfs/bz.hpp>
// FAIRE make_value !!
//
using namespace triqs::gfs;
using namespace triqs::clef;
using namespace triqs::arrays;
using namespace triqs::lattice;
template <typename Function, typename Mesh>
// requires ( is_function_on_mesh<Function,Mesh>())
auto sum(Function const &f, Mesh const &m) ->decltype(make_matrix(0*f(*(m.begin())))) {
//auto sum(Function const &f, Mesh const &m) {
//auto res = typename triqs::regular_type_if_exists_else_type<decltype(f(typename Mesh::mesh_point_t{}))>::type (f(m.begin()));
auto res = make_matrix(0*f(*(m.begin())));
for (auto const &x : m) res = res + f(x);
return res;
}
namespace triqs {
namespace clef {
TRIQS_CLEF_MAKE_FNT_LAZY(sum);
TRIQS_CLEF_MAKE_FNT_LAZY(conj);
}
}
#define TEST(...) std::cout << BOOST_PP_STRINGIZE((__VA_ARGS__)) << " ---> " << (__VA_ARGS__) << std::endl << std::endl;
int main() {
try {
double beta = 1;
auto bz_ = brillouin_zone{bravais_lattice{make_unit_matrix<double>(2)}};
auto g_eps = gf<bz>{{bz_, 20}, {1, 1}};
auto G_k_iom = gf<cartesian_product<bz, imfreq>>{{{bz_, 20}, {beta, Fermion, 100}}, {1, 1}};
// try to assign to expression
placeholder<0> k_;
placeholder<1> w_;
auto eps = make_expr( [](k_t const& k) { return -2 * (cos(k(0)) + cos(k(1))); }) ;
G_k_iom(k_, w_) << 1 / (w_ - eps(k_));
auto G_loc = gf<imfreq, matrix_valued, no_tail>{{beta, Fermion, 100}, {1, 1}};
auto r = G_k_iom(k_t{0, 0}, matsubara_freq{0, beta, Fermion});
auto r5 = sum(k_ >> G_k_iom(k_,0), g_eps.mesh());
G_loc(w_) << sum(k_ >> G_k_iom(k_,w_), g_eps.mesh());
TEST(G_loc(0));
auto G_k_tau = gf<cartesian_product<bz, imtime>>{{{bz_, 20}, {beta, Fermion, 100}}, {1, 1}};
//auto r3 = partial_eval<0>(G_k_iom,0);
//auto r4 = partial_eval<0>(G_k_tau,0);
//auto gt = curry<0>(G_k_tau) [0];
//auto gw = curry<0>(G_k_iom)[0];
//curry<0>(G_k_tau) [k_] << inverse_fourier(curry<0>(G_k_iom)[k_]);
//TEST(G_k_tau[{0,0}]);
// hdf5
//H5::H5File file("ess_g_k_om.h5", H5F_ACC_TRUNC );
//h5_write(file, "g", G);
}
TRIQS_CATCH_AND_ABORT;
}