mirror of
https://github.com/triqs/dft_tools
synced 2025-01-07 03:43:12 +01:00
b355173cf1
* previously the default gf_struct_solver had keys up / down, inconsistent with the default behavior after analyse_block_structure was run: up_0 / down_0. Now the default solver structure always has the _0 in the key. * old behavior resulted in error when analyse_block_structure was called twice * fixed analyse block structure tests with new changes * to correctly use analyse_block_structure use now extract_G_loc(transform_to_solver_blocks=False) * changed density_matrix function to use directly extract_G_loc() if using_gf is selected. * print deprecation warning in density_matrix, same can be achieved via extract_G_loc and [G.density() for G in Gloc] * new function density_matrix_using_point_integration() * enforce in analyse block structure that input dm or G is list with length of n_corr_shells * correct doc string for how include_shells are given * fixed other tests accordingly * fixed small bug in initial block structure regarding length of lists
229 lines
10 KiB
Python
229 lines
10 KiB
Python
from triqs.gf import MeshImFreq, inverse, Omega
|
|
from triqs_dft_tools.sumk_dft import SumkDFT
|
|
from scipy.linalg import expm
|
|
import numpy as np
|
|
from triqs.utility.comparison_tests import assert_gfs_are_close, assert_arrays_are_close, assert_block_gfs_are_close
|
|
from h5 import HDFArchive
|
|
import itertools
|
|
|
|
# The full test checks all different possible combinations of conjugated
|
|
# blocks. This takes a few minutes. For a quick test, just checking one
|
|
# random value suffices.
|
|
# (this parameter affects the second test)
|
|
full_test = False
|
|
|
|
#######################################################################
|
|
# First test #
|
|
# where we check the analyse_block_structure_from_gf function #
|
|
# for the SrIrO3_rot.h5 file #
|
|
#######################################################################
|
|
|
|
mesh = MeshImFreq(40, 'Fermion', 1025)
|
|
SK = SumkDFT(hdf_file='SrIrO3_rot.h5', mesh=mesh)
|
|
Sigma = SK.block_structure.create_gf(mesh=mesh)
|
|
SK.put_Sigma([Sigma])
|
|
G = SK.extract_G_loc(transform_to_solver_blocks=False)
|
|
# the original block structure
|
|
block_structure1 = SK.block_structure.copy()
|
|
G_new = SK.analyse_block_structure_from_gf(G)
|
|
|
|
# the new block structure
|
|
block_structure2 = SK.block_structure.copy()
|
|
|
|
with HDFArchive('analyse_block_structure_from_gf.out.h5', 'w') as ar:
|
|
ar['bs1'] = block_structure1
|
|
ar['bs2'] = block_structure2
|
|
|
|
# check whether the block structure is the same as in the reference
|
|
with HDFArchive('analyse_block_structure_from_gf.out.h5', 'r') as ar, HDFArchive('analyse_block_structure_from_gf.ref.h5', 'r') as ar2:
|
|
assert ar['bs1'] == ar2['bs1'], 'bs1 not equal'
|
|
a1 = ar['bs2']
|
|
a2 = ar2['bs2']
|
|
assert a1 == block_structure2, 'writing/reading block structure incorrect'
|
|
# we set the deg_shells to None because the transformation matrices
|
|
# have a phase freedom and will, therefore, not be equal in general
|
|
a1.deg_shells = None
|
|
a2.deg_shells = None
|
|
assert a1 == a2, 'bs2 not equal'
|
|
|
|
# check if deg shells are correct
|
|
assert len(SK.deg_shells[0]) == 1, 'wrong number of equivalent groups'
|
|
|
|
# check if the Green's functions that are found to be equal in the
|
|
# routine are indeed equal
|
|
for d in SK.deg_shells[0]:
|
|
assert len(d) == 2, 'wrong number of shells in equivalent group'
|
|
# the convention is that for every degenerate shell, the transformation
|
|
# matrix v and the conjugate bool is saved
|
|
# then,
|
|
# maybe_conjugate1( v1^dagger G1 v1 ) = maybe_conjugate2( v2^dagger G2 v2 )
|
|
# therefore, to test, we calculate
|
|
# maybe_conjugate( v^dagger G v )
|
|
# for all degenerate shells and check that they are all equal
|
|
normalized_gfs = []
|
|
for key in d:
|
|
normalized_gf = G_new[0][key].copy()
|
|
normalized_gf.from_L_G_R(d[key][0].conjugate().transpose(), G_new[0][key], d[key][0])
|
|
if d[key][1]:
|
|
normalized_gf << normalized_gf.transpose()
|
|
normalized_gfs.append(normalized_gf)
|
|
for i in range(len(normalized_gfs)):
|
|
for j in range(i + 1, len(normalized_gfs)):
|
|
assert_arrays_are_close(normalized_gfs[i].data, normalized_gfs[j].data, 1.0e-5)
|
|
|
|
#######################################################################
|
|
# Second test #
|
|
# where a Green's function is constructed from a random model #
|
|
# and the analyse_block_structure_from_gf function is tested for that #
|
|
# model #
|
|
#######################################################################
|
|
|
|
|
|
# helper function to get random Hermitian matrix
|
|
def get_random_hermitian(dim):
|
|
herm = np.random.rand(dim, dim) + 1.0j * np.random.rand(dim, dim)
|
|
herm = herm + herm.conjugate().transpose()
|
|
return herm
|
|
|
|
|
|
# helper function to get random unitary matrix
|
|
def get_random_transformation(dim):
|
|
herm = get_random_hermitian(dim)
|
|
T = expm(1.0j * herm)
|
|
return T
|
|
|
|
|
|
# we will conjugate the Green's function blocks according to the entries
|
|
# of conjugate_values
|
|
# for each of the 5 blocks that will be constructed, there is an entry
|
|
# True or False that says whether it will be conjugated
|
|
if full_test:
|
|
# in the full test we check all combinations
|
|
conjugate_values = list(itertools.product([False, True], repeat=5))
|
|
else:
|
|
# in the quick test we check a random combination
|
|
conjugate_values = [np.random.rand(5) > 0.5]
|
|
|
|
for conjugate in conjugate_values:
|
|
# construct a random block-diagonal Hloc
|
|
Hloc = np.zeros((10, 10), dtype=complex)
|
|
# the Hloc of the first three 2x2 blocks is equal
|
|
Hloc0 = get_random_hermitian(2)
|
|
Hloc[:2, :2] = Hloc0
|
|
Hloc[2:4, 2:4] = Hloc0
|
|
Hloc[4:6, 4:6] = Hloc0
|
|
# the Hloc of the last two 2x2 blocks is equal
|
|
Hloc1 = get_random_hermitian(2)
|
|
Hloc[6:8, 6:8] = Hloc1
|
|
Hloc[8:, 8:] = Hloc1
|
|
# construct the hybridization delta
|
|
# this is equal for all 2x2 blocks
|
|
V = get_random_hermitian(2) # the hopping elements from impurity to bath
|
|
b1 = np.random.rand() # the bath energy of the first bath level
|
|
b2 = np.random.rand() # the bath energy of the second bath level
|
|
delta = G[0]['ud'][:2, :2].copy()
|
|
delta[0, 0] << (V[0, 0] * V[0, 0].conjugate() * inverse(Omega - b1) + V[0, 1] * V[0, 1].conjugate() * inverse(Omega - b2)) / 2.0
|
|
delta[0, 1] << (V[0, 0] * V[1, 0].conjugate() * inverse(Omega - b1) + V[0, 1] * V[1, 1].conjugate() * inverse(Omega - b2)) / 2.0
|
|
delta[1, 0] << (V[1, 0] * V[0, 0].conjugate() * inverse(Omega - b1) + V[1, 1] * V[0, 1].conjugate() * inverse(Omega - b2)) / 2.0
|
|
delta[1, 1] << (V[1, 0] * V[1, 0].conjugate() * inverse(Omega - b1) + V[1, 1] * V[1, 1].conjugate() * inverse(Omega - b2)) / 2.0
|
|
# construct G
|
|
G[0].zero()
|
|
for i in range(0, 10, 2):
|
|
G[0]['ud'][i : i + 2, i : i + 2] << inverse(Omega - delta)
|
|
G[0]['ud'] << inverse(inverse(G[0]['ud']) - Hloc)
|
|
|
|
# for testing symm_deg_gf below, we need this
|
|
# we construct it so that for every group of degenerate blocks of G[0], the
|
|
# mean of the blocks of G_noisy is equal to G[0]
|
|
G_noisy = G[0].copy()
|
|
noise1 = np.random.randn(*delta.target_shape)
|
|
G_noisy['ud'][:2, :2].data[:, :, :] += noise1
|
|
G_noisy['ud'][2:4, 2:4].data[:, :, :] -= noise1 / 2.0
|
|
G_noisy['ud'][4:6, 4:6].data[:, :, :] -= noise1 / 2.0
|
|
noise2 = np.random.randn(*delta.target_shape)
|
|
G_noisy['ud'][6:8, 6:8].data[:, :, :] += noise2
|
|
G_noisy['ud'][8:, 8:].data[:, :, :] -= noise2
|
|
|
|
# for testing backward-compatibility in symm_deg_gf, we need the
|
|
# un-transformed Green's functions
|
|
G_pre_transform = G[0].copy()
|
|
G_noisy_pre_transform = G_noisy.copy()
|
|
|
|
# transform each block using a random transformation matrix
|
|
for i in range(0, 10, 2):
|
|
T = get_random_transformation(2)
|
|
G[0]['ud'][i : i + 2, i : i + 2].from_L_G_R(T, G[0]['ud'][i : i + 2, i : i + 2], T.conjugate().transpose())
|
|
G_noisy['ud'][i : i + 2, i : i + 2].from_L_G_R(T, G_noisy['ud'][i : i + 2, i : i + 2], T.conjugate().transpose())
|
|
# if that block shall be conjugated, go ahead and do it
|
|
if conjugate[i // 2]:
|
|
G[0]['ud'][i : i + 2, i : i + 2] << G[0]['ud'][i : i + 2, i : i + 2].transpose()
|
|
G_noisy['ud'][i : i + 2, i : i + 2] << G_noisy['ud'][i : i + 2, i : i + 2].transpose()
|
|
|
|
# analyse the block structure
|
|
G_new = SK.analyse_block_structure_from_gf(G, 1.0e-7)
|
|
|
|
# transform G_noisy etc. to the new block structure
|
|
G_noisy = SK.block_structure.convert_gf(G_noisy, block_structure1, beta=G_noisy.mesh.beta, space_from='sumk')
|
|
G_pre_transform = SK.block_structure.convert_gf(G_pre_transform, block_structure1, beta=G_noisy.mesh.beta, space_from='sumk')
|
|
G_noisy_pre_transform = SK.block_structure.convert_gf(
|
|
G_noisy_pre_transform, block_structure1, beta=G_noisy.mesh.beta, space_from='sumk'
|
|
)
|
|
|
|
assert len(SK.deg_shells[0]) == 2, 'wrong number of equivalent groups found'
|
|
assert sorted([len(d) for d in SK.deg_shells[0]]) == [2, 3], 'wrong number of members in the equivalent groups found'
|
|
for d in SK.deg_shells[0]:
|
|
if len(d) == 2:
|
|
assert 'ud_3' in d, 'shell ud_3 missing'
|
|
assert 'ud_4' in d, 'shell ud_4 missing'
|
|
if len(d) == 3:
|
|
assert 'ud_0' in d, 'shell ud_0 missing'
|
|
assert 'ud_1' in d, 'shell ud_1 missing'
|
|
assert 'ud_2' in d, 'shell ud_2 missing'
|
|
|
|
# the convention is that for every degenerate shell, the transformation
|
|
# matrix v and the conjugate bool is saved
|
|
# then,
|
|
# maybe_conjugate1( v1^dagger G1 v1 ) = maybe_conjugate2( v2^dagger G2 v2 )
|
|
# therefore, to test, we calculate
|
|
# maybe_conjugate( v^dagger G v )
|
|
# for all degenerate shells and check that they are all equal
|
|
normalized_gfs = []
|
|
for key in d:
|
|
normalized_gf = G_new[0][key].copy()
|
|
normalized_gf.from_L_G_R(d[key][0].conjugate().transpose(), G_new[0][key], d[key][0])
|
|
if d[key][1]:
|
|
normalized_gf << normalized_gf.transpose()
|
|
normalized_gfs.append(normalized_gf)
|
|
for i in range(len(normalized_gfs)):
|
|
for j in range(i + 1, len(normalized_gfs)):
|
|
# here, we use a threshold that is 1 order of magnitude less strict
|
|
# because of numerics
|
|
assert_gfs_are_close(normalized_gfs[i], normalized_gfs[j], 1.0e-6)
|
|
|
|
# now we check symm_deg_gf
|
|
# symmetrizing the GF has is has to leave it unchanged
|
|
G_new_symm = G_new[0].copy()
|
|
SK.symm_deg_gf(G_new_symm, 0)
|
|
assert_block_gfs_are_close(G_new[0], G_new_symm, 1.0e-6)
|
|
|
|
# symmetrizing the noisy GF, which was carefully constructed,
|
|
# has to give the same result as G_new[0]
|
|
SK.symm_deg_gf(G_noisy, 0)
|
|
assert_block_gfs_are_close(G_new[0], G_noisy, 1.0e-6)
|
|
|
|
# check backward compatibility of symm_deg_gf
|
|
# first, construct the old format of the deg shells
|
|
for ish in range(len(SK.deg_shells)):
|
|
for gr in range(len(SK.deg_shells[ish])):
|
|
SK.deg_shells[ish][gr] = list(SK.deg_shells[ish][gr].keys())
|
|
|
|
# symmetrizing the GF as is has to leave it unchanged
|
|
G_new_symm << G_pre_transform
|
|
SK.symm_deg_gf(G_new_symm, 0)
|
|
assert_block_gfs_are_close(G_new_symm, G_pre_transform, 1.0e-6)
|
|
|
|
# symmetrizing the noisy GF pre transform, which was carefully constructed,
|
|
# has to give the same result as G_pre_transform
|
|
SK.symm_deg_gf(G_noisy_pre_transform, 0)
|
|
assert_block_gfs_are_close(G_noisy_pre_transform, G_pre_transform, 1.0e-6)
|