3
0
mirror of https://github.com/triqs/dft_tools synced 2024-10-31 19:23:45 +01:00
dft_tools/triqs/gfs/retime.hpp
Olivier Parcollet b45045e81c gfs: change the name of the mesh -> gf_mesh for gcc
gcc has a pb because the template mesh<Variable,Opt>
has the name same as the gf mesh method (!).
Clang is fine however on this...

Solution : rename the template mesh<...> to gf_mesh...
Not very elegant, but ok.
2013-08-27 14:20:50 +02:00

121 lines
5.1 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_GF_ONE_REAL_TIME_H
#define TRIQS_GF_ONE_REAL_TIME_H
#include "./tools.hpp"
#include "./gf.hpp"
#include "./local/tail.hpp"
#include "./domains/R.hpp"
#include "./meshes/linear.hpp"
namespace triqs { namespace gfs {
struct retime {};
template<typename Opt> struct gf_mesh<retime,Opt> : linear_mesh<R_domain> {
typedef linear_mesh<R_domain> B;
gf_mesh() = default;
gf_mesh(double tmin, double tmax, size_t n_points, mesh_kind mk=full_bins) : B (typename B::domain_t(), tmin, tmax, n_points, mk){}
};
namespace gfs_implementation {
// singularity
template<typename Opt> struct singularity<retime,matrix_valued,Opt> { typedef local::tail type;};
template<typename Opt> struct singularity<retime,scalar_valued,Opt> { typedef local::tail type;};
// h5 name
template<typename Opt> struct h5_name<retime,matrix_valued,Opt> { static std::string invoke(){ return "ReTime";}};
/// --------------------------- evaluator ---------------------------------
template<typename Opt, typename Target>
struct evaluator<retime,Target,Opt> {
static constexpr int arity = 1;
//typedef typename std::conditional < std::is_same<Target, matrix_valued>::value, arrays::matrix_view<std::complex<double>>, std::complex<double>>::type rtype;
typedef typename std::conditional < std::is_same<Target, matrix_valued>::value, arrays::matrix<std::complex<double>>, std::complex<double>>::type rtype;
template<typename G>
rtype operator() (G const * g,double t0) const {
size_t n; double w; bool in;
std::tie(in, n, w) = windowing(g->mesh(),t0);
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
auto gg = on_mesh(*g);
return (1-w) * gg(n) + w * gg(n+1);
}
template<typename G>
local::tail_view operator()(G const * g,freq_infty const &) const {return g->singularity();}
};
/// --------------------------- data access ---------------------------------
template<typename Opt> struct data_proxy<retime,matrix_valued,Opt> : data_proxy_array<std::complex<double>,3> {};
template<typename Opt> struct data_proxy<retime,scalar_valued,Opt> : data_proxy_array<std::complex<double>,1> {};
// ------------------------------- Factories --------------------------------------------------
//matrix_valued
template<typename Opt> struct factories<retime, matrix_valued,Opt> {
typedef gf<retime,matrix_valued> gf_t;
template<typename MeshType>
static gf_t make_gf(MeshType && m, tqa::mini_vector<size_t,2> shape, local::tail_view const t) {
typename gf_t::data_regular_t A(shape.front_append(m.size())); A() =0;
return gf_t ( std::forward<MeshType>(m), std::move(A), t, nothing() ) ;
}
static gf_t make_gf(double tmin, double tmax, size_t n_points, tqa::mini_vector<size_t,2> shape, mesh_kind mk) {
typename gf_t::data_regular_t A(shape.front_append(n_points)); A() =0;
return gf_t(gf_mesh<retime,Opt>(tmin, tmax, n_points,mk), std::move(A), local::tail(shape), nothing());
}
static gf_t make_gf(double tmin, double tmax, size_t n_points, tqa::mini_vector<size_t,2> shape) {
typename gf_t::data_regular_t A(shape.front_append(n_points)); A() =0;
return gf_t(gf_mesh<retime,Opt>(tmin, tmax, n_points), std::move(A), local::tail(shape), nothing());
}
};
//scalar_valued
template<typename Opt> struct factories<retime, scalar_valued,Opt> {
typedef gf<retime,scalar_valued> gf_t;
template<typename MeshType>
static gf_t make_gf(MeshType && m, local::tail_view const t) {
typename gf_t::data_regular_t A(m.size()); A() =0;
return gf_t ( std::forward<MeshType>(m), std::move(A), t, nothing() ) ;
}
static gf_t make_gf(double tmin, double tmax, size_t n_points, mesh_kind mk) {
typename gf_t::data_regular_t A(n_points); A() =0;
return gf_t(gf_mesh<retime,Opt>(tmin, tmax, n_points,mk), std::move(A), local::tail(tqa::mini_vector<size_t,2>(1,1)), nothing());
}
static gf_t make_gf(double tmin, double tmax, size_t n_points) {
typename gf_t::data_regular_t A(n_points); A() =0;
return gf_t(gf_mesh<retime,Opt>(tmin, tmax, n_points), std::move(A), local::tail(tqa::mini_vector<size_t,2>(1,1)), nothing());
}
};
} // gfs_implementation
}}
#endif