3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-12 14:08:24 +01:00
dft_tools/triqs/gfs/local/functions.cpp

131 lines
4.4 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#include "functions.hpp"
#include <triqs/utility/legendre.hpp>
namespace triqs { namespace gfs {
dcomplex F(dcomplex a,double b,double Beta) {return -a/(1+exp(-Beta*b));}
using arrays::array;
//-------------------------------------------------------
// For Imaginary Matsubara Frequency functions
// ------------------------------------------------------
arrays::matrix<double> density( gf_view<imfreq> const & G) {
dcomplex I(0,1);
auto sh = G.data().shape().front_pop();
auto Beta = G.domain().beta;
local::tail_view t = G(freq_infty());
if (!t.is_decreasing_at_infinity()) TRIQS_RUNTIME_ERROR<<" density computation : Green Function is not as 1/omega or less !!!";
const size_t N1=sh[0], N2 = sh[1];
arrays::array<dcomplex,2> dens_part(sh), dens_tail(sh), dens(sh);
arrays::matrix<double> res(sh);
dens_part()=0;dens()=0;dens_tail()=0;
for (size_t n1=0; n1<N1;n1++)
for (size_t n2=0; n2<N2;n2++) {
dcomplex d= t(1)(n1,n2) , A=t(2)(n1,n2),B = t(3)(n1,n2) ;
double b1 = 0,b2 =1, b3 =-1;
dcomplex a1 = d-B, a2 = (A+B)/2, a3 = (B-A)/2;
for (auto & w : G.mesh()) dens_part(n1,n2)+= G[w](n1,n2) - (a1/(w - b1) + a2 / (w-b2) + a3/(w-b3));
dens_part(n1,n2) = dens_part(n1,n2)/Beta;
dens_tail(n1,n2) = d + F(a1,b1,Beta) + F(a2,b2,Beta)+ F(a3,b3,Beta);
// If the Green function are NOT complex, then one use the symmetry property
// fold the sum and get a factor 2
//double fact = (Green_Function_Are_Complex_in_time ? 1 : 2);
//dens_part(n1,n2) = dens_part(n1,n2)*(fact/Beta) + (d + F(a1,b1,Beta) + F(a2,b2,Beta)+ F(a3,b3,Beta));
//if (!Green_Function_Are_Complex_in_time) dens_part = 0+real(dens_part);
}
for (size_t n1=0; n1<N1;n1++)
for (size_t n2=0; n2<N2;n2++) {
dens_part(n1,n2) = dens_part(n1,n2) + real(dens_part(n2,n1)) - I * imag(dens_part(n2,n1)) + dens_tail(n1,n2);
// ?? STRANGE ??
dens_part(n2,n1) = real(dens_part(n1,n2)) - I * imag(dens_part(n1,n2));
}
for (size_t n1=0; n1<N1;n1++)
for (size_t n2=0; n2<N2;n2++) {
res(n1,n2) = real(dens_part(n1,n2));
}
return res;
}
double density(gf_view<imfreq, scalar_valued> const & g){
return density(reinterpret_scalar_valued_gf_as_matrix_valued(g))(0,0);
}
arrays::matrix<double> density( gf_view<legendre> const & gl) {
auto sh = gl.data().shape().front_pop();
arrays::matrix<double> res(sh);
res() = 0.0;
for (auto l : gl.mesh()) {
res -= sqrt(2*l.index()+1) * gl[l];
}
res /= gl.domain().beta;
return res;
}
// compute a tail from the Legendre GF
// this is Eq. 8 of our paper
local::tail_view get_tail(gf_const_view<legendre> gl, int size = 10, int omin = -1) {
auto sh = gl.data().shape().front_pop();
local::tail t(sh, size, omin);
t.data() = 0.0;
for (int p=1; p<=t.order_max(); p++)
for (auto l : gl.mesh())
t(p) += (triqs::utility::legendre_t(l.index(),p)/pow(gl.domain().beta,p)) * gl[l];
return t;
}
// Impose a discontinuity G(\tau=0)-G(\tau=\beta)
void enforce_discontinuity(gf_view<legendre> & gl, arrays::array_view<double,2> disc) {
double norm = 0.0;
arrays::vector<double> t(gl.data().shape()[0]);
for (int i=0; i<t.size(); ++i) {
t(i) = triqs::utility::legendre_t(i,1) / gl.domain().beta;
norm += t(i)*t(i);
}
arrays::array<double,2> corr(disc.shape()); corr() = 0;
for (auto l : gl.mesh()) {
corr += t(l.index()) * gl[l];
}
arrays::range R;
for (auto l : gl.mesh()) {
gl.data()(l.index(),R,R) += (disc - corr) * t(l.index()) / norm;
}
}
}}