mirror of
https://github.com/triqs/dft_tools
synced 2024-11-01 19:53:45 +01:00
f2c7d449cc
for earlier commits, see TRIQS0.x repository.
109 lines
2.7 KiB
C++
109 lines
2.7 KiB
C++
|
|
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2011 by L. Boehnke, M. Ferrero, O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
|
|
#ifndef LEGENDRE_asiowuer
|
|
#define LEGENDRE_asiowuer
|
|
|
|
#include <boost/math/special_functions/bessel.hpp>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <complex>
|
|
#include <ostream>
|
|
|
|
namespace triqs {
|
|
namespace utility {
|
|
|
|
const std::complex<double> i_c(0.0,1.0);
|
|
const double pi = boost::math::constants::pi<double>();
|
|
|
|
// This is T_{nl} following Eq.(E2) of our paper
|
|
inline std::complex<double> legendre_T(int n, int l) {
|
|
|
|
// we assume n positive. if we need n negative we can fix this here
|
|
assert(n >= 0);
|
|
|
|
// note: cyl_bessel_j(l,x) give the Bessel functions of the first kind J_l (x)
|
|
// one then gets the spherical Bessel with j_l (x) = \sqrt{\pi / (2x)} J_{l+0.5} (x)
|
|
return (sqrt(2*l+1)/sqrt(2*n+1)) * exp(i_c*(n+0.5)*pi) * pow(i_c,l) * boost::math::cyl_bessel_j(l+0.5,(n+0.5)*pi);
|
|
|
|
}
|
|
|
|
// This is t_l^p following Eq.(E8) of our paper
|
|
inline double legendre_t(int l, int p) {
|
|
|
|
// p is the 1/omega power, it can't be negative
|
|
assert(p > 0);
|
|
|
|
// in these two cases we can directly give back 0
|
|
if ((l+p)%2 == 0 || p > l+1) return 0.0;
|
|
|
|
// the factorials are done here
|
|
double f = 1;
|
|
for (int i = l+p-1; (i > l-p+1) && (i > 1); i--) f *= i;
|
|
for (int i = p-1; i > 1; i--) f /= i;
|
|
|
|
return pow( double(-1),double(p) ) * 2 * sqrt(2*l+1) * f;
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
Generates the Legendre polynomials
|
|
P_0(x) = 1.0
|
|
P_1(x) = x
|
|
n P_{n} = (2n-1) x P_{n-1}(x) - (n-1) P_{n-2}(x)
|
|
*/
|
|
class legendre_generator {
|
|
|
|
double _x;
|
|
uint n;
|
|
double cyclicArray[2];
|
|
|
|
public:
|
|
|
|
double next() {
|
|
if (n>1)
|
|
{
|
|
uint eo=(n)%2;
|
|
cyclicArray[eo]=((2*n-1)*_x*cyclicArray[1-eo]-(n-1)*cyclicArray[eo])/n;
|
|
n++;
|
|
return cyclicArray[eo];
|
|
}
|
|
else
|
|
{
|
|
n++;
|
|
return cyclicArray[n-1];
|
|
}
|
|
}
|
|
|
|
void reset (double x) {
|
|
_x=x;
|
|
n=0;
|
|
cyclicArray[0]=1.0;
|
|
cyclicArray[1]=x;
|
|
}
|
|
|
|
};
|
|
|
|
}};
|
|
|
|
#endif
|