3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 03:33:50 +01:00
dft_tools/triqs/lattice/tight_binding.hpp
2014-02-18 15:53:38 +01:00

100 lines
3.3 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#pragma once
#include "brillouin_zone.hpp"
#include <triqs/utility/complex_ops.hpp>
namespace triqs {
namespace lattice {
/**
For tightbinding Hamiltonian with fully localised orbitals
Overlap between orbital is taken as unit matrix.
*/
class tight_binding {
bravais_lattice bl_;
std::vector<std::vector<long>> all_disp;
std::vector<matrix<dcomplex>> all_matrices;
public:
///
tight_binding(bravais_lattice const& bl, std::vector<std::vector<long>> all_disp, std::vector<matrix<dcomplex>> all_matrices);
/// Underlying lattice
bravais_lattice const& lattice() const { return bl_; }
/// Number of bands, i.e. size of the matrix t(k)
int n_bands() const { return bl_.n_orbitals(); }
// calls F(R, t(R)) for all R
template <typename F> friend void foreach(tight_binding const& tb, F f) {
int n = tb.all_disp.size();
for (int i = 0; i < n; ++i) f(tb.all_disp[i], tb.all_matrices[i]);
}
// a simple function on the domain brillouin_zone
struct fourier_impl {
tight_binding const& tb;
const int nb;
using domain_t = brillouin_zone;
brillouin_zone domain() const {
return {tb.lattice()};
}
template <typename K> matrix<dcomplex> operator()(K const& k) {
matrix<dcomplex> res(nb, nb);
res() = 0;
foreach(tb, [&](std::vector<long> const& displ, matrix<dcomplex> const& m) {
double dot_prod = 0;
int imax = displ.size();
for (int i = 0; i < imax; ++i) dot_prod += k(i) * displ[i];
//double dot_prod = k(0) * displ[0] + k(1) * displ[1];
res += m * exp(2_j * M_PI * dot_prod);
});
return res;
}
};
fourier_impl friend fourier(tight_binding const& tb) {
return {tb, tb.n_bands()};
}
}; // tight_binding
/**
Factorized version of hopping (for speed)
k_in[:,n] is the nth vector
In the result, R[:,:,n] is the corresponding hopping t(k)
*/
array<dcomplex, 3> hopping_stack(tight_binding const& TB, arrays::array_const_view<double, 2> k_stack);
// not optimal ordering here
std::pair<array<double, 1>, array<double, 2>> dos(tight_binding const& TB, int nkpts, int neps);
std::pair<array<double, 1>, array<double, 1>> dos_patch(tight_binding const& TB, const array<double, 2>& triangles, int neps,
int ndiv);
array<double, 2> energies_on_bz_path(tight_binding const& TB, k_t const& K1, k_t const& K2, int n_pts);
array<double, 2> energies_on_bz_grid(tight_binding const& TB, int n_pts);
}
}