mirror of
https://github.com/triqs/dft_tools
synced 2025-01-08 20:33:16 +01:00
177 lines
7.6 KiB
Python
177 lines
7.6 KiB
Python
|
|
################################################################################
|
|
#
|
|
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
#
|
|
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
|
#
|
|
# TRIQS is free software: you can redistribute it and/or modify it under the
|
|
# terms of the GNU General Public License as published by the Free Software
|
|
# Foundation, either version 3 of the License, or (at your option) any later
|
|
# version.
|
|
#
|
|
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
# details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
################################################################################
|
|
|
|
|
|
import copy,numpy
|
|
import string
|
|
from types import *
|
|
from pytriqs.gf.local import *
|
|
from pytriqs.archive import *
|
|
import pytriqs.utility.mpi as mpi
|
|
|
|
|
|
class Symmetry:
|
|
"""This class provides the routines for applying symmetry operations for the k sums.
|
|
It contains the permutations of the atoms in the unti cell, and the corresponding
|
|
rotational matrices for each symmetry operation."""
|
|
|
|
def __init__(self, hdf_file, subgroup = None):
|
|
"""Initialises the class.
|
|
Reads the permutations and rotation matrizes from the file, and constructs the mapping for
|
|
the given orbitals. For each orbit a matrix is read!!!
|
|
SO: Flag for SO coupled calculations.
|
|
SP: Spin polarisation yes/no
|
|
"""
|
|
|
|
assert type(hdf_file)==StringType,"hdf_file must be a filename"; self.hdf_file = hdf_file
|
|
thingstoread = ['n_s','n_atoms','perm','orbits','SO','SP','time_inv','mat','mat_tinv']
|
|
for it in thingstoread: exec "self.%s = 0"%it
|
|
|
|
if (mpi.is_master_node()):
|
|
#Read the stuff on master:
|
|
ar = HDFArchive(hdf_file,'a')
|
|
if (subgroup is None):
|
|
ar2 = ar
|
|
else:
|
|
ar2 = ar[subgroup]
|
|
|
|
for it in thingstoread: exec "self.%s = ar2['%s']"%(it,it)
|
|
del ar2
|
|
del ar
|
|
|
|
#broadcasting
|
|
for it in thingstoread: exec "self.%s = mpi.bcast(self.%s)"%(it,it)
|
|
|
|
# now define the mapping of orbitals:
|
|
# self.map[iorb]=jorb gives the permutation of the orbitals as given in the list, when the
|
|
# permutation of the atoms is done:
|
|
self.n_orbits = len(self.orbits)
|
|
|
|
self.map = [ [0 for iorb in range(self.n_orbits)] for in_s in range(self.n_s) ]
|
|
for in_s in range(self.n_s):
|
|
for iorb in range(self.n_orbits):
|
|
|
|
srch = copy.deepcopy(self.orbits[iorb])
|
|
srch[0] = self.perm[in_s][self.orbits[iorb][0]-1]
|
|
self.map[in_s][iorb] = self.orbits.index(srch)
|
|
|
|
|
|
|
|
def symmetrize(self,obj):
|
|
|
|
assert isinstance(obj,list),"obj has to be a list of objects!"
|
|
assert len(obj)==self.n_orbits,"obj has to be a list of the same length as defined in the init"
|
|
|
|
if (isinstance(obj[0],BlockGf)):
|
|
symm_obj = [ obj[i].copy() for i in range(len(obj)) ] # here the result is stored, it is a BlockGf!
|
|
for iorb in range(self.n_orbits): symm_obj[iorb].zero() # set to zero
|
|
else:
|
|
# if not a BlockGf, we assume it is a matrix (density matrix), has to be complex since self.mat is complex!
|
|
#symm_obj = [ numpy.zeros([self.orbits[iorb][3],self.orbits[iorb][3]],numpy.complex_) for iorb in range(self.n_orbits) ]
|
|
symm_obj = [ copy.deepcopy(obj[i]) for i in range(len(obj)) ]
|
|
|
|
for iorb in range(self.n_orbits):
|
|
if (type(symm_obj[iorb])==DictType):
|
|
for ii in symm_obj[iorb]: symm_obj[iorb][ii] *= 0.0
|
|
else:
|
|
symm_obj[iorb] *= 0.0
|
|
|
|
|
|
for in_s in range(self.n_s):
|
|
|
|
for iorb in range(self.n_orbits):
|
|
|
|
l = self.orbits[iorb][2] # s, p, d, or f
|
|
dim = self.orbits[iorb][3]
|
|
jorb = self.map[in_s][iorb]
|
|
|
|
|
|
if (isinstance(obj[0],BlockGf)):
|
|
|
|
#if l==0:
|
|
# symm_obj[jorb] += obj[iorb]
|
|
#else:
|
|
|
|
tmp = obj[iorb].copy()
|
|
if (self.time_inv[in_s]): tmp <<= tmp.transpose()
|
|
for sig,gf in tmp: tmp[sig].from_L_G_R(self.mat[in_s][iorb],tmp[sig],self.mat[in_s][iorb].conjugate().transpose())
|
|
tmp *= 1.0/self.n_s
|
|
symm_obj[jorb] += tmp
|
|
|
|
else:
|
|
|
|
if (type(obj[iorb])==DictType):
|
|
|
|
for ii in obj[iorb]:
|
|
#if (l==0):
|
|
# symm_obj[jorb][ii] += obj[iorb][ii]/self.n_s
|
|
#else:
|
|
if (self.time_inv[in_s]==0):
|
|
symm_obj[jorb][ii] += numpy.dot(numpy.dot(self.mat[in_s][iorb],obj[iorb][ii]),
|
|
self.mat[in_s][iorb].conjugate().transpose()) / self.n_s
|
|
else:
|
|
symm_obj[jorb][ii] += numpy.dot(numpy.dot(self.mat[in_s][iorb],obj[iorb][ii].conjugate()),
|
|
self.mat[in_s][iorb].conjugate().transpose()) / self.n_s
|
|
|
|
|
|
|
|
else:
|
|
#if (l==0):
|
|
# symm_obj[jorb] += obj[iorb]/self.n_s
|
|
#else:
|
|
if (self.time_inv[in_s]==0):
|
|
symm_obj[jorb] += numpy.dot(numpy.dot(self.mat[in_s][iorb],obj[iorb]),self.mat[in_s][iorb].conjugate().transpose()) / self.n_s
|
|
else:
|
|
symm_obj[jorb] += numpy.dot(numpy.dot(self.mat[in_s][iorb],obj[iorb].conjugate()),
|
|
self.mat[in_s][iorb].conjugate().transpose()) / self.n_s
|
|
|
|
|
|
# This does not what it is supposed to do, check how this should work:
|
|
# if ((self.SO==0) and (self.SP==0)):
|
|
# # add time inv:
|
|
#mpi.report("Add time inversion")
|
|
# for iorb in range(self.n_orbits):
|
|
# if (isinstance(symm_obj[0],BlockGf)):
|
|
# tmp = symm_obj[iorb].copy()
|
|
# tmp <<= tmp.transpose()
|
|
# for sig,gf in tmp: tmp[sig].from_L_G_R(self.mat_tinv[iorb],tmp[sig],self.mat_tinv[iorb].transpose().conjugate())
|
|
# symm_obj[iorb] += tmp
|
|
# symm_obj[iorb] /= 2.0
|
|
#
|
|
# else:
|
|
# if (type(symm_obj[iorb])==DictType):
|
|
# for ii in symm_obj[iorb]:
|
|
# symm_obj[iorb][ii] += numpy.dot(numpy.dot(self.mat_tinv[iorb],symm_obj[iorb][ii].conjugate()),
|
|
# self.mat_tinv[iorb].transpose().conjugate())
|
|
# symm_obj[iorb][ii] /= 2.0
|
|
# else:
|
|
# symm_obj[iorb] += numpy.dot(numpy.dot(self.mat_tinv[iorb],symm_obj[iorb].conjugate()),
|
|
# self.mat_tinv[iorb].transpose().conjugate())
|
|
# symm_obj[iorb] /= 2.0
|
|
|
|
|
|
return symm_obj
|
|
|
|
|
|
|
|
|