3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-08 20:33:16 +01:00
dft_tools/python/solver_multiband.py
2013-08-07 16:30:09 +02:00

449 lines
19 KiB
Python

################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
from pytriqs.operators import *
from pytriqs.applications.impurity_solvers.cthyb_matrix import Solver
from pytriqs.applications.dft.U_matrix import *
import pytriqs.utility.mpi as mpi
from types import *
import numpy
def sum_list(L):
""" Can sum any list"""
return reduce(lambda x, y: x+y, L) if len(L)>0 else []
#########################################
#
# Solver for the Multi-Band problem
#
#########################################
class SolverMultiBand(Solver):
"""
This is a general solver for a multiband local Hamiltonian.
Calling arguments:
beta = inverse temperature
n_orb = Number of local orbitals
U_interact = Average Coulomb interaction
J_hund = Hund coupling
use_spinflip = true/false
use_pairhop = true/false
use_matrix: Use the interaction matrix calculated from the Slater integrals
is use_matrix, you need also:
l: angular momentum of the orbital, l=2 is d
T: Transformation matrix for U vertex. If not present, use standard complex harmonics
"""
def __init__(self, beta, n_orb, gf_struct = False, map = False):
self.n_orb = n_orb
# either get or construct gf_struct
if (gf_struct):
assert map, "give also the mapping!"
self.map = map
else:
# standard gf_struct and map
gf_struct = [ ('%s'%(ud),[n for n in range(n_orb)]) for ud in ['up','down'] ]
self.map = {'up' : ['up' for v in range(n_orb)], 'down' : ['down' for v in range(n_orb)]}
# now initialize the solver with the stuff given above:
Solver.__init__(self, beta = beta, gf_struct = gf_struct)
def solve(self, U_interact=None, J_hund=None, use_spinflip=False,
use_matrix = True, l=2, T=None, dim_reps=None, irep=None, deg_orbs = [], sl_int = None, **params):
self.use_spinflip = use_spinflip
self.U, self.Up, self.U4ind, self.offset = set_U_matrix(U_interact,J_hund,self.n_orb,l,use_matrix,T,sl_int,use_spinflip,dim_reps,irep)
# define mapping of indices:
self.map_ind={}
for nm in self.map:
bl_names = self.map[nm]
block = []
for a,al in self.gf_struct:
if a in bl_names: block.append(al)
self.map_ind[nm] = range(self.n_orb)
i = 0
for al in block:
cnt = 0
for a in range(len(al)):
self.map_ind[nm][i] = cnt
i = i+1
cnt = cnt+1
# set the Hamiltonian
if (use_spinflip==False):
Hamiltonian = self.__set_hamiltonian_density()
else:
if (use_matrix):
#Hamiltonian = self.__set_full_hamiltonian_slater()
Hamiltonian = self.__set_spinflip_hamiltonian_slater()
else:
Hamiltonian = self.__set_full_hamiltonian_kanamori(J_hund = J_hund)
# set the Quantum numbers
Quantum_Numbers = self.__set_quantum_numbers(self.gf_struct)
# Determine if there are only blocs of size 1:
self.blocssizeone = True
for ib in self.gf_struct:
if (len(ib[1])>1): self.blocssizeone = False
nc = params.pop("n_cycles",10000)
if ((self.blocssizeone) and (self.use_spinflip==False)):
use_seg = True
else:
use_seg = False
#gm = self.set_global_moves(deg_orbs)
Solver.solve(self,H_local = Hamiltonian, quantum_numbers = Quantum_Numbers, n_cycles = nc, use_segment_picture = use_seg, **params)
def set_global_moves(self, deg_orbs, factor=0.05):
# Sets some global moves given orbital degeneracies:
strbl = ''
strind = ''
inddone = []
for orbs in deg_orbs:
ln = len(orbs)
orbsorted = sorted(orbs)
for ii in range(ln):
if (strbl!=''): strbl += ','
bl1 = orbsorted[ii]
bl2 = orbsorted[(ii+1)%ln]
ind1 = [ll for ll in self.Sigma[bl1].indices ]
ind2 = [ll for ll in self.Sigma[bl2].indices ]
strbl += "'" + bl1 + "':'" + bl2 + "'"
for kk, ind in enumerate(ind1):
if not (ind in inddone):
if (strind!=''): strind += ','
strind += '%s:%s'%(ind1[kk],ind2[kk])
inddone.append(ind)
if len(deg_orbs)>0:
str = 'Global_Moves = [ (%s, lambda (a,alpha,dag) : ({ '%factor + strbl + ' }[a], {' + strind + '}[alpha], dag) )]'
exec str
return Global_Moves
else:
return []
def __set_hamiltonian_density(self):
# density-density Hamiltonian:
spinblocs = [v for v in self.map]
#print spinblocs
Hamiltonian = N(self.map[spinblocs[0]][0],0) # initialize it
for sp1 in spinblocs:
for sp2 in spinblocs:
for i in range(self.n_orb):
for j in range(self.n_orb):
if (sp1==sp2):
Hamiltonian += 0.5 * self.U[self.offset+i,self.offset+j] * N(self.map[sp1][i],self.map_ind[sp1][i]) * N(self.map[sp2][j],self.map_ind[sp2][j])
else:
Hamiltonian += 0.5 * self.Up[self.offset+i,self.offset+j] * N(self.map[sp1][i],self.map_ind[sp1][i]) * N(self.map[sp2][j],self.map_ind[sp2][j])
Hamiltonian -= N(self.map[spinblocs[0]][0],0) # substract the initializing value
return Hamiltonian
def __set_full_hamiltonian_slater(self):
spinblocs = [v for v in self.map]
Hamiltonian = N(self.map[spinblocs[0]][0],0) # initialize it
#print "Starting..."
# use the full 4-index U-matrix:
#for sp1 in spinblocs:
# for sp2 in spinblocs:
for m1 in range(self.n_orb):
for m2 in range(self.n_orb):
for m3 in range(self.n_orb):
for m4 in range(self.n_orb):
if (abs(self.U4ind[self.offset+m1,self.offset+m2,self.offset+m3,self.offset+m4])>0.00001):
for sp1 in spinblocs:
for sp2 in spinblocs:
#print sp1,sp2,m1,m2,m3,m4
Hamiltonian += 0.5 * self.U4ind[self.offset+m1,self.offset+m2,self.offset+m3,self.offset+m4] * \
Cdag(self.map[sp1][m1],self.map_ind[sp1][m1]) * Cdag(self.map[sp2][m2],self.map_ind[sp2][m2]) * C(self.map[sp2][m4],self.map_ind[sp2][m4]) * C(self.map[sp1][m3],self.map_ind[sp1][m3])
#print "end..."
Hamiltonian -= N(self.map[spinblocs[0]][0],0) # substract the initializing value
return Hamiltonian
def __set_spinflip_hamiltonian_slater(self):
"""Takes only spin-flip and pair-hopping terms"""
spinblocs = [v for v in self.map]
Hamiltonian = N(self.map[spinblocs[0]][0],0) # initialize it
#print "Starting..."
# use the full 4-index U-matrix:
#for sp1 in spinblocs:
# for sp2 in spinblocs:
for m1 in range(self.n_orb):
for m2 in range(self.n_orb):
for m3 in range(self.n_orb):
for m4 in range(self.n_orb):
if ((abs(self.U4ind[self.offset+m1,self.offset+m2,self.offset+m3,self.offset+m4])>0.00001) and
( ((m1==m2)and(m3==m4)) or ((m1==m3)and(m2==m4)) or ((m1==m4)and(m2==m3)) ) ):
for sp1 in spinblocs:
for sp2 in spinblocs:
#print sp1,sp2,m1,m2,m3,m4
Hamiltonian += 0.5 * self.U4ind[self.offset+m1,self.offset+m2,self.offset+m3,self.offset+m4] * \
Cdag(self.map[sp1][m1],self.map_ind[sp1][m1]) * Cdag(self.map[sp2][m2],self.map_ind[sp2][m2]) * C(self.map[sp2][m4],self.map_ind[sp2][m4]) * C(self.map[sp1][m3],self.map_ind[sp1][m3])
#print "end..."
Hamiltonian -= N(self.map[spinblocs[0]][0],0) # substract the initializing value
return Hamiltonian
def __set_full_hamiltonian_kanamori(self,J_hund):
spinblocs = [v for v in self.map]
assert len(spinblocs)==2,"spinflips in Kanamori representation only implemented for up/down structure!"
Hamiltonian = N(self.map[spinblocs[0]][0],0) # initialize it
# density terms:
for sp1 in spinblocs:
for sp2 in spinblocs:
for i in range(self.n_orb):
for j in range(self.n_orb):
if (sp1==sp2):
Hamiltonian += 0.5 * self.U[self.offset+i,self.offset+j] * N(self.map[sp1][i],self.map_ind[sp1][i]) * N(self.map[sp2][j],self.map_ind[sp2][j])
else:
Hamiltonian += 0.5 * self.Up[self.offset+i,self.offset+j] * N(self.map[sp1][i],self.map_ind[sp1][i]) * N(self.map[sp2][j],self.map_ind[sp2][j])
# spinflip term:
sp1 = spinblocs[0]
sp2 = spinblocs[1]
for i in range(self.n_orb-1):
for j in range(i+1,self.n_orb):
Hamiltonian -= J_hund * ( Cdag(self.map[sp1][i],self.map_ind[sp1][i]) * C(self.map[sp2][i],self.map_ind[sp2][i]) * Cdag(self.map[sp2][j],self.map_ind[sp2][j]) * C(self.map[sp1][j],self.map_ind[sp1][j]) ) # first term
Hamiltonian -= J_hund * ( Cdag(self.map[sp2][i],self.map_ind[sp2][i]) * C(self.map[sp1][i],self.map_ind[sp1][i]) * Cdag(self.map[sp1][j],self.map_ind[sp1][j]) * C(self.map[sp2][j],self.map_ind[sp2][j]) ) # second term
# pairhop terms:
for i in range(self.n_orb-1):
for j in range(i+1,self.n_orb):
Hamiltonian -= J_hund * ( Cdag(self.map[sp1][i],self.map_ind[sp1][i]) * Cdag(self.map[sp2][i],self.map_ind[sp2][i]) * C(self.map[sp1][j],self.map_ind[sp1][j]) * C(self.map[sp2][j],self.map_ind[sp2][j]) ) # first term
Hamiltonian -= J_hund * ( Cdag(self.map[sp2][j],self.map_ind[sp2][j]) * Cdag(self.map[sp1][j],self.map_ind[sp1][j]) * C(self.map[sp2][i],self.map_ind[sp2][i]) * C(self.map[sp1][i],self.map_ind[sp1][i]) ) # second term
Hamiltonian -= N(self.map[spinblocs[0]][0],0) # substract the initializing value
return Hamiltonian
def __set_quantum_numbers(self,gf_struct):
QN = {}
spinblocs = [v for v in self.map]
# Define the quantum numbers:
if (self.use_spinflip) :
Ntot = sum_list( [ N(self.map[s][i],self.map_ind[s][i]) for s in spinblocs for i in range(self.n_orb) ] )
QN['NtotQN'] = Ntot
#QN['Ntot'] = sum_list( [ N(self.map[s][i],i) for s in spinblocs for i in range(self.n_orb) ] )
if (len(spinblocs)==2):
# Assuming up/down structure:
Sz = sum_list( [ N(self.map[spinblocs[0]][i],self.map_ind[spinblocs[0]][i])-N(self.map[spinblocs[1]][i],self.map_ind[spinblocs[1]][i]) for i in range(self.n_orb) ] )
QN['SzQN'] = Sz
# new quantum number: works only if there are only spin-flip and pair hopping, not any more complicated things
for i in range(self.n_orb):
QN['Sz2_%s'%i] = (N(self.map[spinblocs[0]][i],self.map_ind[spinblocs[0]][i])-N(self.map[spinblocs[1]][i],self.map_ind[spinblocs[1]][i])) * (N(self.map[spinblocs[0]][i],self.map_ind[spinblocs[0]][i])-N(self.map[spinblocs[1]][i],self.map_ind[spinblocs[1]][i]))
else :
for ibl in range(len(gf_struct)):
QN['N%s'%gf_struct[ibl][0]] = sum_list( [ N(gf_struct[ibl][0],gf_struct[ibl][1][i]) for i in range(len(gf_struct[ibl][1])) ] )
return QN
def fit_tails(self):
"""Fits the tails using the constant value for the Re Sigma calculated from F=Sigma*G.
Works only for blocks of size one."""
#if (len(self.gf_struct)==2*self.n_orb):
if (self.blocssizeone):
spinblocs = [v for v in self.map]
mpi.report("Fitting tails manually")
known_coeff = numpy.zeros([1,1,2],numpy.float_)
msh = [x.imag for x in self.G[self.map[spinblocs[0]][0]].mesh ]
fit_start = msh[self.fitting_Frequency_Start]
fit_stop = msh[self.N_Frequencies_Accumulated]
# Fit the tail of G just to get the density
for n,g in self.G:
g.fitTail([[[0,0,1]]],7,fit_start,2*fit_stop)
densmat = self.G.density()
for sig1 in spinblocs:
for i in range(self.n_orb):
coeff = 0.0
for sig2 in spinblocs:
for j in range(self.n_orb):
if (sig1==sig2):
coeff += self.U[self.offset+i,self.offset+j] * densmat[self.map[sig1][j]][0,0].real
else:
coeff += self.Up[self.offset+i,self.offset+j] * densmat[self.map[sig2][j]][0,0].real
known_coeff[0,0,1] = coeff
self.Sigma[self.map[sig1][i]].fitTail(fixed_coef = known_coeff, order_max = 3, fit_start = fit_start, fit_stop = fit_stop)
else:
for n,sig in self.Sigma:
known_coeff = numpy.zeros([sig.N1,sig.N2,1],numpy.float_)
msh = [x.imag for x in sig.mesh]
fit_start = msh[self.fitting_Frequency_Start]
fit_stop = msh[self.N_Frequencies_Accumulated]
sig.fitTail(fixed_coef = known_coeff, order_max = 3, fit_start = fit_start, fit_stop = fit_stop)
class SolverMultiBandOld(SolverMultiBand):
"""
Old MultiBand Solver construct
"""
def __init__(self, Beta, Norb, U_interact=None, J_Hund=None, GFStruct=False, map=False, use_spinflip=False,
useMatrix = True, l=2, T=None, dimreps=None, irep=None, deg_orbs = [], Sl_Int = None):
SolverMultiBand.__init__(self, beta=Beta, n_orb=Norb, gf_struct=GFStruct, map=map)
self.U_interact = U_interact
self.J_Hund = J_Hund
self.use_spinflip = use_spinflip
self.useMatrix = useMatrix
self.l = l
self.T = T
self.dimreps = dimreps
self.irep = irep
self.deg_orbs = deg_orbs
self.Sl_Int = Sl_Int
self.gen_keys = copy.deepcopy(self.__dict__)
msg = """
**********************************************************************************
Warning: You are using the old constructor for the solver. Beware that this will
be deprecated in future versions. Please check the documentation.
**********************************************************************************
"""
mpi.report(msg)
def Solve(self):
params = copy.deepcopy(self.__dict__)
for i in self.gen_keys: self.params.pop(i)
self.params.pop("gen_keys")
self.solve(self, U_interact=self.U_interact, J_hund=self.J_Hund, use_spinflip=self.use_spinflip,
use_matrix = self.useMatrix, l=self.l, T=self.T, dim_reps=self.dimreps, irep=self.irep,
deg_orbs = self.deg_orbs, sl_int = self.Sl_Int, **params)
def set_U_matrix(U_interact,J_hund,n_orb,l,use_matrix=True,T=None,sl_int=None,use_spinflip=False,dim_reps=None,irep=None):
""" Set up the interaction vertex"""
offset = 0
U4ind = None
U = None
Up = None
if (use_matrix):
if not (sl_int is None):
Umat = Umatrix(l=l)
assert len(sl_int)==(l+1),"sl_int has the wrong length"
if (type(sl_int)==ListType):
Rcl = numpy.array(sl_int)
else:
Rcl = sl_int
Umat(T=T,Rcl=Rcl)
else:
if ((U_interact==None)and(J_hund==None)):
mpi.report("Give U,J or Slater integrals!!!")
assert 0
Umat = Umatrix(U_interact=U_interact, J_hund=J_hund, l=l)
Umat(T=T)
Umat.reduce_matrix()
if (Umat.N==Umat.Nmat):
# Transformation T is of size 2l+1
U = Umat.U
Up = Umat.Up
else:
# Transformation is of size 2(2l+1)
U = Umat.U
# now we have the reduced matrices U and Up, we need it for tail fitting anyways
if (use_spinflip):
#Take the 4index Umatrix
# check for imaginary matrix elements:
if (abs(Umat.Ufull.imag)>0.0001).any():
mpi.report("WARNING: complex interaction matrix!! Ignoring imaginary part for the moment!")
mpi.report("If you want to change this, look into Wien2k/solver_multiband.py")
U4ind = Umat.Ufull.real
# this will be changed for arbitrary irep:
# use only one subgroup of orbitals?
if not (irep is None):
#print irep, dim_reps
assert not (dim_reps is None), "Dimensions of the representatives are missing!"
assert n_orb==dim_reps[irep-1],"Dimensions of dimrep and n_orb do not fit!"
for ii in range(irep-1):
offset += dim_reps[ii]
else:
if ((U_interact==None)and(J_hund==None)):
mpi.report("For Kanamori representation, give U and J!!")
assert 0
U = numpy.zeros([n_orb,n_orb],numpy.float_)
Up = numpy.zeros([n_orb,n_orb],numpy.float_)
for i in range(n_orb):
for j in range(n_orb):
if (i==j):
Up[i,i] = U_interact + 2.0*J_hund
else:
Up[i,j] = U_interact
U[i,j] = U_interact - J_hund
return U, Up, U4ind, offset