3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-26 14:23:38 +01:00
dft_tools/triqs/arrays/expression_template/matrix_algebra.hpp
Olivier Parcollet f78e6baf9e code cleaning
- TRIQS_MODEL_CONCEPT renamed : clearer for doc
- index_value_type : remove, useless...
2013-08-27 13:43:58 +02:00

112 lines
5.8 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_ARRAYS_EXPRESSION_MATRIX_ALGEBRA_H
#define TRIQS_ARRAYS_EXPRESSION_MATRIX_ALGEBRA_H
#include "./vector_algebra.hpp"
#include "../matrix.hpp"
#include "../linalg/matmul.hpp"
#include "../linalg/mat_vec_mul.hpp"
#include "../linalg/det_and_inverse.hpp"
namespace triqs { namespace arrays {
template<typename Tag, typename L, typename R, bool scalar_are_diagonal_matrices= false>
struct matrix_expr : TRIQS_CONCEPT_TAG_NAME(ImmutableMatrix) {
typedef typename keeper_type<L,scalar_are_diagonal_matrices>::type L_t;
typedef typename keeper_type<R,scalar_are_diagonal_matrices>::type R_t;
static_assert( get_rank<R_t>::value==0 || get_rank<L_t>::value==0 || get_rank<L_t>::value == get_rank<R_t>::value, "rank mismatch in matrix operations");
typedef typename std::result_of<operation<Tag>(typename L_t::value_type,typename R_t::value_type)>::type value_type;
typedef typename std::remove_cv< typename std::remove_reference<typename std::result_of<combine_domain(L_t,R_t)>::type>::type>::type domain_type;
L_t l; R_t r;
template<typename LL, typename RR> matrix_expr(LL && l_, RR && r_) : l(std::forward<LL>(l_)), r(std::forward<RR>(r_)) {}
domain_type domain() const { return combine_domain()(l,r); }
//template<typename KeyType> value_type operator[](KeyType && key) const { return operation<Tag>()(l[std::forward<KeyType>(key)] , r[std::forward<KeyType>(key)]);}
template<typename ... Args> value_type operator()(Args && ... args) const { return operation<Tag>()(l(std::forward<Args>(args)...) , r(std::forward<Args>(args)...));}
friend std::ostream &operator <<(std::ostream &sout, matrix_expr const &expr){return sout << "("<<expr.l << " "<<operation<Tag>::name << " "<<expr.r<<")" ; }
};
template<typename L> // a special case : the unary operator !
struct matrix_unary_m_expr : TRIQS_CONCEPT_TAG_NAME(ImmutableMatrix) {
typedef typename keeper_type<L>::type L_t;
typedef typename L_t::value_type value_type;
typedef typename L_t::domain_type domain_type;
L_t l;
template<typename LL> matrix_unary_m_expr(LL && l_) : l(std::forward<LL>(l_)) {}
domain_type domain() const { return l.domain(); }
//template<typename KeyType> value_type operator[](KeyType&& key) const {return -l[key];}
template<typename ... Args> value_type operator()(Args && ... args) const { return -l(std::forward<Args>(args)...);}
friend std::ostream &operator <<(std::ostream &sout, matrix_unary_m_expr const &expr){return sout << '-'<<expr.l; }
};
// Now we can define all the C++ operators ...
#define DEFINE_OPERATOR(TAG, OP, TRAIT1, TRAIT2) \
template<typename A1, typename A2>\
typename std::enable_if<TRAIT1<A1>::value && TRAIT2 <A2>::value, matrix_expr<tags::TAG, A1,A2>>::type\
operator OP (A1 const & a1, A2 const & a2) { return matrix_expr<tags::TAG, A1,A2>(a1,a2);}
DEFINE_OPERATOR(plus, +, ImmutableMatrix,ImmutableMatrix);
DEFINE_OPERATOR(minus, -, ImmutableMatrix,ImmutableMatrix);
DEFINE_OPERATOR(minus, -, ImmutableMatrix,is_in_ZRC);
DEFINE_OPERATOR(minus, -, is_in_ZRC,ImmutableMatrix);
DEFINE_OPERATOR(multiplies, *, is_in_ZRC,ImmutableMatrix);
DEFINE_OPERATOR(multiplies, *, ImmutableMatrix,is_in_ZRC);
DEFINE_OPERATOR(divides, /, ImmutableMatrix,is_in_ZRC);
#undef DEFINE_OPERATOR
// the addition/substraction of diagonal matrix is special : all scalar are diagonal matrices here...
#define DEFINE_OPERATOR(TAG, OP, TRAIT1, TRAIT2) \
template<typename A1, typename A2>\
typename std::enable_if<TRAIT1<A1>::value && TRAIT2 <A2>::value, matrix_expr<tags::TAG, A1,A2,true>>::type\
operator OP (A1 const & a1, A2 const & a2) { return matrix_expr<tags::TAG, A1,A2,true>(a1,a2);}
DEFINE_OPERATOR(plus, +, ImmutableMatrix,is_in_ZRC);
DEFINE_OPERATOR(plus, +, is_in_ZRC,ImmutableMatrix);
DEFINE_OPERATOR(minus, -, ImmutableMatrix,is_in_ZRC);
DEFINE_OPERATOR(minus, -, is_in_ZRC,ImmutableMatrix);
#undef DEFINE_OPERATOR
// the unary is special
template<typename A1> typename std::enable_if<ImmutableMatrix<A1>::value, matrix_unary_m_expr<A1>>::type
operator - (A1 const & a1) { return {a1};}
template<typename Expr > matrix <typename Expr::value_type>
make_matrix( Expr const & e) { return matrix<typename Expr::value_type>(e);}
template<typename M1, typename M2> // matrix * matrix
typename boost::enable_if< mpl::and_<ImmutableMatrix<M1>, ImmutableMatrix<M2> >, matmul_lazy<M1,M2> >::type
operator* (M1 const & a, M2 const & b) { return matmul_lazy<M1,M2>(a,b); }
template<typename M, typename V> // matrix * vector
typename boost::enable_if< mpl::and_<ImmutableMatrix<M>, ImmutableVector<V> >, mat_vec_mul_lazy<M,V> >::type
operator* (M const & m, V const & v) { return mat_vec_mul_lazy<M,V>(m,v); }
template<typename A, typename M> // anything / matrix ---> anything * inverse(matrix)
typename boost::lazy_enable_if< ImmutableMatrix<M>, type_of_mult<A, inverse_lazy <M> > >::type
operator/ (A const & a, M const & m) { return a * inverse(m);}
}}//namespace triqs::arrays
#endif