mirror of
https://github.com/triqs/dft_tools
synced 2025-01-10 21:18:22 +01:00
1014 lines
47 KiB
Python
1014 lines
47 KiB
Python
##########################################################################
|
|
|
|
#
|
|
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
#
|
|
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
|
# Copyright (c) 2022-2023 Simons Foundation
|
|
#
|
|
# TRIQS is free software: you can redistribute it and/or modify it under the
|
|
# terms of the GNU General Public License as published by the Free Software
|
|
# Foundation, either version 3 of the License, or (at your option) any later
|
|
# version.
|
|
#
|
|
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
# details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
# Authors: M. Aichhorn, S. Beck, A. Hampel, L. Pourovskii, V. Vildosola
|
|
|
|
##########################################################################
|
|
import sys
|
|
import numpy
|
|
from warnings import warn
|
|
from triqs.gf import *
|
|
import triqs.utility.mpi as mpi
|
|
from .symmetry import *
|
|
import scipy.constants as cst
|
|
import os.path
|
|
|
|
__all__ = ['transport_distribution', 'conductivity_and_seebeck', 'write_output_to_hdf',
|
|
'init_spectroscopy', 'transport_function', 'raman_vertex']
|
|
|
|
# ----------------- helper functions -----------------------
|
|
|
|
|
|
def read_transport_input_from_hdf(sum_k):
|
|
r"""
|
|
Reads the data for transport calculations from the hdf5 archive.
|
|
Parameters
|
|
----------
|
|
sum_k : sum_k object
|
|
triqs SumkDFT object
|
|
Returns
|
|
-------
|
|
sum_k : sum_k object
|
|
triqs SumkDFT object
|
|
"""
|
|
|
|
assert sum_k.dft_code in (
|
|
'wien2k', 'elk', 'w90'), "read_transport_input_from_hdf() is only implemented for wien2k and elk inputs"
|
|
|
|
if sum_k.dft_code in ('wien2k', 'elk'):
|
|
thingstoread = ['band_window_optics', 'velocities_k']
|
|
else:
|
|
thingstoread = ['band_window_optics']
|
|
|
|
sum_k.read_input_from_hdf(subgrp=sum_k.transp_data, things_to_read=thingstoread)
|
|
|
|
if (sum_k.dft_code == "wien2k"):
|
|
thingstoread = ['band_window', 'lattice_angles', 'lattice_constants',
|
|
'lattice_type', 'n_symmetries', 'rot_symmetries']
|
|
elif (sum_k.dft_code == "elk"):
|
|
thingstoread = ['band_window', 'n_symmetries', 'rot_symmetries',
|
|
'cell_vol']
|
|
elif (sum_k.dft_code == 'w90'):
|
|
thingstoread = ['band_window', 'n_symmetries', 'rot_symmetries']
|
|
|
|
sum_k.read_input_from_hdf(subgrp=sum_k.misc_data, things_to_read=thingstoread)
|
|
|
|
if (sum_k.dft_code == "wien2k"):
|
|
sum_k.cell_vol = cellvolume(
|
|
sum_k.lattice_type, sum_k.lattice_constants, sum_k.lattice_angles)[1]
|
|
|
|
return sum_k
|
|
|
|
|
|
def write_output_to_hdf(sum_k, things_to_save, subgrp='user_data'):
|
|
r"""
|
|
Saves data from a list into the HDF file. Prints a warning if a requested data is not found in SumkDFT object.
|
|
|
|
Parameters
|
|
----------
|
|
hdf_file : hdf5 archive
|
|
hd5 file
|
|
things_to_save : list of strings
|
|
List of datasets to be saved into the hdf5 file.
|
|
subgrp : string, optional
|
|
Name of hdf5 file subgroup in which the data are to be stored.
|
|
"""
|
|
|
|
if not (mpi.is_master_node()):
|
|
return # do nothing on nodes
|
|
with HDFArchive(sum_k.hdf_file, 'a') as ar:
|
|
if not subgrp in ar:
|
|
ar.create_group(subgrp)
|
|
for it, val in things_to_save.items():
|
|
if it in ["gf_struct_sumk", "gf_struct_solver",
|
|
"solver_to_sumk", "sumk_to_solver", "solver_to_sumk_block"]:
|
|
warn("It is not recommended to save '{}' individually. Save 'block_structure' instead.".format(it))
|
|
ar[subgrp][it] = val
|
|
|
|
|
|
def cellvolume(lattice_type, lattice_constants, latticeangle):
|
|
r"""
|
|
Determines the conventional und primitive unit cell volumes.
|
|
|
|
Parameters
|
|
----------
|
|
lattice_type : string
|
|
Lattice type according to the Wien2k convention (P, F, B, R, H, CXY, CYZ, CXZ).
|
|
lattice_constants : list of double
|
|
Lattice constants (a, b, c).
|
|
lattice angles : list of double
|
|
Lattice angles (:math:`\alpha, \beta, \gamma`).
|
|
|
|
Returns
|
|
-------
|
|
vol_c : double
|
|
Conventional unit cell volume.
|
|
vol_p : double
|
|
Primitive unit cell volume.
|
|
"""
|
|
|
|
a = lattice_constants[0]
|
|
b = lattice_constants[1]
|
|
c = lattice_constants[2]
|
|
c_al = numpy.cos(latticeangle[0])
|
|
c_be = numpy.cos(latticeangle[1])
|
|
c_ga = numpy.cos(latticeangle[2])
|
|
vol_c = a * b * c * \
|
|
numpy.sqrt(1 + 2 * c_al * c_be * c_ga -
|
|
c_al ** 2 - c_be ** 2 - c_ga ** 2)
|
|
|
|
det = {"P": 1, "F": 4, "B": 2, "R": 3,
|
|
"H": 1, "CXY": 2, "CYZ": 2, "CXZ": 2}
|
|
vol_p = vol_c / det[lattice_type]
|
|
|
|
return vol_c, vol_p
|
|
|
|
|
|
def fermi_dis(w, beta, der=0):
|
|
r"""
|
|
Fermi distribution.
|
|
|
|
.. math::
|
|
f(x) = 1/(e^x+1).
|
|
|
|
Parameters
|
|
----------
|
|
w : double
|
|
frequency
|
|
beta : double
|
|
inverse temperature
|
|
der : integer
|
|
order of derivative
|
|
|
|
Returns
|
|
-------
|
|
f : double
|
|
"""
|
|
exponent = numpy.longdouble(w * beta)
|
|
fermi = 1.0 / (numpy.exp(exponent) + 1)
|
|
if der == 0:
|
|
return fermi
|
|
elif der == 1:
|
|
return - beta * fermi ** 2 * numpy.exp(exponent)
|
|
else:
|
|
raise ValueError('higher order of derivative than 1 not implemented')
|
|
|
|
|
|
def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='./', calc_velocity=False, calc_inverse_mass=False, oc_select='both', oc_basis='h'):
|
|
r"""
|
|
Recomputes dft_input objects on a finer mesh using WannierBerri and Wannier90 input.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
sum_k : sum_k object
|
|
triqs SumkDFT object
|
|
seedname: string
|
|
Wannier90 seedname
|
|
nk_optics: single integer/float or three integers
|
|
if single integer given, mesh is [nk_optics, nk_optics, nk_optics]
|
|
elif single float given, mesh is ceiling of *sum_k.kpts * nk_optics
|
|
elif three integers given, mesh is nk_optics
|
|
pathname : string, optional, default='./'
|
|
location of Wannier90 data
|
|
calc_velocity : boolean, optional, default=False
|
|
whether the velocity (first derivative of H(k)) is computed
|
|
calc_inverse_mass : boolean, optional, default=False
|
|
whether the inverse effective mass (second derivative of H(k)) is computed
|
|
oc_select : string, optional, default='both'
|
|
select contributions for optical conductivity from ['intra', 'inter', 'both']
|
|
oc_basis : string, optional, default='h'
|
|
gauge choice options 'h' for Hamiltonian/band and 'w' for Wannier basis
|
|
|
|
Returns
|
|
-------
|
|
sum_k : sum_k object
|
|
triqs SumkDFT object
|
|
things_to_store : dictionary
|
|
dictionary of datasets to be temporarily overwritten
|
|
"""
|
|
|
|
mpi.report('Starting Wannier interpolation...')
|
|
|
|
BOHRTOANG = cst.physical_constants['Bohr radius'][0]/cst.angstrom
|
|
HARTREETOEV = cst.physical_constants['Hartree energy'][0]/cst.eV
|
|
n_inequiv_spin_blocks = sum_k.SP + 1 - sum_k.SO
|
|
|
|
# set-up k mesh depending on input shape
|
|
# read in transport input and some checks
|
|
read_transport_input_from_hdf(sum_k)
|
|
|
|
# first check for right formatting of sum_k.nk_optics
|
|
assert len(nk_optics) in [1, 3], '"nk_optics" must be given as three integers or one float'
|
|
if len(nk_optics) == 1:
|
|
assert numpy.array(list(nk_optics)).dtype in (
|
|
int, float), '"nk_optics" single value must be float or integer'
|
|
if len(nk_optics) == 3:
|
|
assert numpy.array(list(nk_optics)).dtype == int, '"nk_optics" mesh must be integers'
|
|
if len(nk_optics) == 1:
|
|
interpolate_factor = nk_optics[0]
|
|
nk_x, nk_y, nk_z = list(
|
|
map(lambda i: int(numpy.ceil(interpolate_factor * len(set(sum_k.kpts[:, i])))), range(3)))
|
|
else:
|
|
nk_x, nk_y, nk_z = nk_optics
|
|
|
|
# check for spin calculation (not supported)
|
|
assert sum_k.SP == 0, 'spin dependent transport calculations are not supported.'
|
|
|
|
n_orb = numpy.max([sum_k.n_orbitals[ik][0] for ik in range(sum_k.n_k)])
|
|
|
|
# temporarily recompute the following quantities on a different mesh
|
|
things_to_modify = {'bz_weights': None, 'hopping': None, 'kpt_weights': None, 'kpts': None,
|
|
'n_k': None, 'n_orbitals': None, 'proj_mat': None, 'band_window': None, 'band_window_optics': None}
|
|
things_to_store = dict.fromkeys(things_to_modify, None)
|
|
|
|
# initialize variables
|
|
n_kpts = nk_x * nk_y * nk_z
|
|
kpts = numpy.zeros((n_kpts, 3))
|
|
hopping = numpy.zeros((n_kpts, 1, n_orb, n_orb), dtype=complex)
|
|
proj_mat = numpy.zeros(numpy.shape(
|
|
hopping[:, 0, 0, 0]) + numpy.shape(sum_k.proj_mat[0, :]), dtype=complex)
|
|
cell_volume = kpts = None
|
|
if calc_velocity:
|
|
velocities_k = None
|
|
if calc_inverse_mass:
|
|
inverse_mass = None
|
|
|
|
if mpi.is_master_node():
|
|
# try wannierberri import
|
|
try:
|
|
import wannierberri as wb
|
|
except ImportError:
|
|
print('ImportError: WannierBerri needs to be installed to run optics calculations with Wannier90')
|
|
try:
|
|
mpi.MPI.COMM_WORLD.Abort(1)
|
|
except:
|
|
sys.exit()
|
|
# initialize WannierBerri system
|
|
shift_gamma = numpy.array([0.0, 0.0, 0.0])
|
|
# wberri = wb.System_w90(pathname + seedname, berry=True, fft='numpy')
|
|
# WannierBerri uses python multiprocessing which might conflict with mpi.
|
|
# if there's a segfault, uncomment the following line
|
|
wberri = wb.System_w90(pathname + seedname, berry=True, fftlib='numpy', npar=16)
|
|
grid = wb.Grid(wberri, NKdiv=1, NKFFT=[nk_x, nk_y, nk_z])
|
|
dataK = wb.data_K.Data_K_R(wberri, dK=shift_gamma, grid=grid, fftlib='numpy')
|
|
|
|
assert dataK.HH_K.shape == hopping[:, 0, :, :].shape, 'wberri / wannier Hamiltonian has different number of orbitals than SumK object. Disentanglement is not supported as of now.'
|
|
|
|
# read in hoppings and proj_mat
|
|
if oc_basis == 'h':
|
|
hopping[:, 0, range(hopping.shape[2]), range(hopping.shape[3])] = dataK.E_K
|
|
elif oc_basis == 'w':
|
|
hopping[:, 0, :, :] = dataK.HH_K
|
|
fake_proj_mat = numpy.zeros(numpy.shape(dataK.UU_K), dtype=complex)
|
|
fake_proj_mat[:, range(numpy.shape(fake_proj_mat)[1]), range(
|
|
numpy.shape(fake_proj_mat)[2])] = 1. + 1j*0.0
|
|
|
|
for isp in range(n_inequiv_spin_blocks):
|
|
iorb = 0
|
|
for icrsh in range(sum_k.n_corr_shells):
|
|
dim = sum_k.corr_shells[icrsh]['dim']
|
|
if oc_basis == 'h':
|
|
proj_mat[:, isp, icrsh, 0:dim, :] = dataK.UU_K[:, iorb:iorb+dim, :]
|
|
elif oc_basis == 'w':
|
|
proj_mat[:, isp, icrsh, 0:dim, :] = fake_proj_mat[:, iorb:iorb+dim, :]
|
|
iorb += dim
|
|
|
|
if calc_velocity:
|
|
# velocity: [k x n_orb x n_orb x R]
|
|
def _commutator(A, B):
|
|
term1 = numpy.einsum('kmo, kona -> kmna', A, B)
|
|
term2 = numpy.einsum('kmoa, kon -> kmna', B, A)
|
|
return term1 - term2
|
|
|
|
# in the band basis
|
|
# vh_alpha = Hhbar_alpha + i [Hh, Ahbar_alpha]
|
|
if oc_basis == 'h':
|
|
# first term
|
|
Hhbar_alpha = dataK.Xbar('Ham', 1)
|
|
# second term
|
|
c_Hh_Ahbar_alpha = _commutator(hopping[:, 0, :, :], dataK.Xbar('AA'))
|
|
velocities_k = (Hhbar_alpha + 1j * c_Hh_Ahbar_alpha) / HARTREETOEV / BOHRTOANG
|
|
|
|
# split into diag and offdiag elements, corresponding to intra- and interband contributions
|
|
v_diag = numpy.zeros(numpy.shape(velocities_k), dtype=complex)
|
|
v_diag[:, range(numpy.shape(velocities_k)[1]),
|
|
range(numpy.shape(velocities_k)[2]), :] = velocities_k[:, range(numpy.shape(velocities_k)[1]),
|
|
range(numpy.shape(velocities_k)[2]), :]
|
|
v_offdiag = velocities_k.copy()
|
|
v_offdiag[:, range(numpy.shape(velocities_k)[1]), range(
|
|
numpy.shape(velocities_k)[2]), :] = 0. + 1j*0.0
|
|
|
|
if oc_select == 'intra':
|
|
velocities_k = v_diag
|
|
elif oc_select == 'inter':
|
|
velocities_k = v_offdiag
|
|
elif oc_select == 'both':
|
|
velocities_k = v_diag + v_offdiag
|
|
|
|
# in the orbital basis
|
|
# vw_alpha = Hw_alpha + i [Hw, Aw_alpha]
|
|
elif oc_basis == 'w':
|
|
# first term, taken from
|
|
# github.com/wannier-berri/wannier-berri/blob/2d3982331c02775f5ee033c664849d5f2d41d0c1/wannierberri/data_K.py#L687
|
|
Hw_alpha = wb.data_K.Data_K_R._R_to_k_H(dataK, dataK.Ham_R, der=1, hermitian=True)
|
|
# second term
|
|
Aw_alpha = dataK.fft_R_to_k(dataK.get_R_mat('AA'), hermitian=True)
|
|
c_Hw_Aw_alpha = _commutator(hopping[:, 0, :, :], Aw_alpha)
|
|
velocities_k = (Hw_alpha + 1j * c_Hw_Aw_alpha) / HARTREETOEV / BOHRTOANG
|
|
|
|
if calc_inverse_mass:
|
|
# approximating this as the first term in eq (28) in PRB 75, 195121 (2007)
|
|
# application published in PHYSICAL REVIEW RESEARCH 6, 023124 (2024)
|
|
# Procedure is the same as for calc_velocity, but using second derivative of Hamiltonian.
|
|
# in the band basis
|
|
if oc_basis == 'h':
|
|
inverse_mass = dataK.Xbar('Ham', 2)
|
|
# in the orbital basis
|
|
elif oc_basis == 'w':
|
|
inverse_mass = wb.data_K.Data_K_R._R_to_k_H(dataK, dataK.Ham_R, der=2, hermitian=True)
|
|
inverse_mass = inverse_mass / HARTREETOEV / BOHRTOANG**2
|
|
# read in rest from dataK
|
|
cell_volume = dataK.cell_volume / BOHRTOANG ** 3
|
|
kpts = dataK.kpoints_all
|
|
|
|
# broadcast everything
|
|
sum_k.cell_vol = mpi.bcast(cell_volume)
|
|
kpts = mpi.bcast(kpts)
|
|
hopping = mpi.bcast(hopping)
|
|
proj_mat = mpi.bcast(proj_mat)
|
|
if calc_velocity:
|
|
velocities_k = mpi.bcast(velocities_k)
|
|
if calc_inverse_mass:
|
|
inverse_mass = mpi.bcast(inverse_mass)
|
|
|
|
# write interpolated sumk quantities into "things_to_modify"
|
|
things_to_modify['n_k'] = n_kpts
|
|
things_to_modify['n_orbitals'] = numpy.full((n_kpts, 1), n_orb)
|
|
for key in ['bz_weights', 'kpt_weights']:
|
|
things_to_modify[key] = numpy.full(n_kpts, 1/n_kpts)
|
|
n_inequiv_spin_blocks = sum_k.SP + 1 - sum_k.SO
|
|
for key in ['band_window', 'band_window_optics']:
|
|
things_to_modify[key] = [numpy.full((n_kpts, 2), sum_k.band_window[isp][0])
|
|
for isp in range(n_inequiv_spin_blocks)]
|
|
things_to_modify['kpts'] = kpts
|
|
things_to_modify['hopping'] = hopping
|
|
things_to_modify['proj_mat'] = proj_mat
|
|
if calc_velocity:
|
|
sum_k.velocities_k = None
|
|
things_to_modify['velocities_k'] = velocities_k
|
|
if calc_inverse_mass:
|
|
sum_k.inverse_mass = None
|
|
things_to_modify['inverse_mass'] = inverse_mass
|
|
|
|
# now save previous sum_k instances into "things_to_store" and overwrite
|
|
# TODO: decide whether this should be undone after the run
|
|
for key in things_to_modify:
|
|
things_to_store[key] = getattr(sum_k, key)
|
|
setattr(sum_k, key, things_to_modify[key])
|
|
|
|
# write velocities to file
|
|
if calc_velocity:
|
|
if mpi.is_master_node():
|
|
ar = HDFArchive(sum_k.hdf_file, 'a')
|
|
ar['dft_transp_input']['velocities_k'] = velocities_k
|
|
if calc_inverse_mass:
|
|
if mpi.is_master_node():
|
|
ar = HDFArchive(sum_k.hdf_file, 'a')
|
|
ar['dft_transp_input']['inverse_mass'] = inverse_mass
|
|
|
|
return sum_k, things_to_store
|
|
|
|
# ----------------- transport -----------------------
|
|
|
|
def raman_vertex(sumk,ik,direction,code,isp, options=None):
|
|
r"""
|
|
Reads all necessary quantities for transport calculations from transport subgroup of the hdf5 archive.
|
|
Performs checks on input. Uses interpolation if code=wannier90.
|
|
|
|
Parameters
|
|
----------
|
|
sum_k : sum_k object
|
|
triqs SumkDFT object
|
|
ik : integer
|
|
the ik index in which will be calculate the raman vertex
|
|
direction : string
|
|
direction to calculate the Raman vertex.
|
|
code : string
|
|
DFT code from which velocities are being read. Options: 'wien2k', 'wannier90'
|
|
isp : integer
|
|
spin index
|
|
options : dictionary, optional
|
|
additional keywords necessary in case a new direction wants to be implemented
|
|
|
|
Returns
|
|
-------
|
|
raman_vertex : 2D array
|
|
numpy array size [n_orb, n_orb] of complex type
|
|
"""
|
|
if code in ('wien2k'):
|
|
assert 0, 'Raman for wien2k not yet implemented'
|
|
dir_names=['xx','yy','zz','B2g','B1g','A1g','Eg']
|
|
dir_array=[ [[1.,0.,0.],[0.,0.,0.],[0.,0.,0.]],
|
|
[[0.,0.,0.],[0.,1.,0.],[0.,0.,0.]],
|
|
[[0.,0.,0.],[0.,0.,0.],[0.,0.,1.]],
|
|
[[0.,1.,0.],[0.,0.,0.],[0.,0.,0.]],
|
|
[[0.5,0.,0.],[0.,-0.5,0.],[0.,0.,0.]],
|
|
[[0.,0.,0.],[0.,0.,0.],[0.,0.,1.]],
|
|
[[0.,0.,1.],[0.,0.,0.],[0.,0.,0.]] ]
|
|
# Load custom directions
|
|
if "custom_dir" in options:
|
|
assert isinstance(options["custom_dir"],dict), "raman_vertex: in options, custom_dir must be a dictionary"
|
|
for dire in options["custom_dir"]:
|
|
assert numpy.shape(numpy.array(options["custom_dir"][dire]))==(3,3), "raman_vertex: custom_dir must have shape 3x3 (a numpy array or a nested list)"
|
|
if dire in dir_names:
|
|
if direction==dire and ik==0: #reports only when ik==0
|
|
mpi.report("Warning: the direction %s was already loaded and will be replace with the one provided in custom_dir"%dire)
|
|
idir = dir_names.index(dire)
|
|
dir_array[idir]=options["custom_dir"][dire]
|
|
else:
|
|
dir_names.append(dire)
|
|
dir_array.append(options["custom_dir"][dire])
|
|
|
|
dir_array=[numpy.array(el,dtype=numpy.float_) for el in dir_array] # convert list to numpy array
|
|
|
|
if direction in dir_names:
|
|
idir = dir_names.index(direction)
|
|
else:
|
|
assert 0,'raman_vertex: direction %s is not supported by default. Try to add it by raman_vertex options custom_dir.'%direction
|
|
n_bands = sumk.n_orbitals[ik][isp]
|
|
ram_vert = numpy.zeros( (n_bands, n_bands), dtype=numpy.complex_)
|
|
for i in range(n_bands):
|
|
for j in range(n_bands):
|
|
ram_vert[i,j]=numpy.dot(dir_array[idir],sumk.inverse_mass[ik,i,j,:,:]).trace()
|
|
|
|
return ram_vert
|
|
|
|
def init_spectroscopy(sum_k, code='wien2k', w90_params={}):
|
|
r"""
|
|
Reads all necessary quantities for transport calculations from transport subgroup of the hdf5 archive.
|
|
Performs checks on input. Uses interpolation if code=wannier90.
|
|
|
|
Parameters
|
|
----------
|
|
sum_k : sum_k object
|
|
triqs SumkDFT object
|
|
code : string
|
|
DFT code from which velocities are being read. Options: 'wien2k', 'wannier90'
|
|
w90_params : dictionary, optional
|
|
additional keywords necessary in case code == 'wannier90'
|
|
|
|
Returns
|
|
-------
|
|
sum_k : sum_k object
|
|
triqs SumkDFT object, interpolated
|
|
"""
|
|
|
|
mpi.report('Initializing optical conductivity...')
|
|
# up and down are equivalent if SP = 0
|
|
n_inequiv_spin_blocks = sum_k.SP + 1 - sum_k.SO
|
|
|
|
# ----------------- set-up input from DFT -----------------------
|
|
if code in ('wien2k', 'elk'):
|
|
# Check if wien converter was called and read transport subgroup form
|
|
# hdf file
|
|
if mpi.is_master_node():
|
|
ar = HDFArchive(sum_k.hdf_file, 'r')
|
|
if not (sum_k.transp_data in ar):
|
|
raise IOError(
|
|
"transport_distribution: No %s subgroup in hdf file found! Call convert_transp_input first." % sum_k.transp_data)
|
|
# check if outputs file was converted
|
|
if not ('n_symmetries' in ar['dft_misc_input']):
|
|
raise IOError(
|
|
"transport_distribution: n_symmetries missing. Check if case.outputs file is present and call convert_misc_input() or convert_dft_input().")
|
|
|
|
sum_k = read_transport_input_from_hdf(sum_k)
|
|
|
|
elif code in ('wannier90'):
|
|
required_entries = ['seedname', 'nk_optics']
|
|
assert all(entry in w90_params for entry in required_entries), 'Please provide additional keywords "seedname" and "nk_optics" for "code = "wannier90""'
|
|
# check if spin-unpolarized
|
|
assert n_inequiv_spin_blocks == 1, "Spin-polarized optical conductivity calculations not implemented with Wannier90"
|
|
|
|
# check some of the input
|
|
pathname = w90_params['pathname'] if 'pathname' in w90_params else './'
|
|
assert all(isinstance(name, str) for name in [
|
|
'seedname', 'pathname']), f'Check pathname {w90_params["pathname"]} and seedname {w90_params["seedname"]}'
|
|
for file_ending in ['.wout', '_hr.dat', '.chk', '.mmn', '.eig']:
|
|
filename = [pathname, w90_params['seedname'], file_ending]
|
|
assert os.path.isfile(
|
|
''.join(filename)), f'Filename {"".join(filename)} does not exist!'
|
|
calc_velocity = w90_params['calc_velocity'] if 'calc_velocity' in w90_params else True
|
|
calc_inverse_mass = w90_params['calc_inverse_mass'] if 'calc_inverse_mass' in w90_params else False
|
|
assert all(isinstance(name, bool) for name in [
|
|
calc_velocity, calc_inverse_mass]), f'Parameter {calc_velocity} or {calc_inverse_mass} not bool!'
|
|
|
|
# select contributions to be used
|
|
oc_select = w90_params['oc_select'] if 'oc_select' in w90_params else 'both'
|
|
assert oc_select in ['intra', 'inter',
|
|
'both'], '"oc_select" needs to be either ["intra", "inter", "both"]'
|
|
# gauge choice options 'h' for Hamiltonian and 'w' for Wannier
|
|
oc_basis = w90_params['oc_basis'] if 'oc_basis' in w90_params else 'h'
|
|
assert oc_basis in ['h', 'w'], '"oc_basis" needs to be either ["h", "w"]'
|
|
# finally, make sure oc_select is 'both' for oc_basis = 'w'
|
|
if oc_basis == 'w' and oc_select != 'both':
|
|
warn(f'"oc_select" must be "both" for "oc_basis" = "w"!')
|
|
oc_select = 'both'
|
|
# further checks for calc_inverse_mass
|
|
if calc_inverse_mass:
|
|
assert oc_select == 'both', '"oc_select" not implemented for "calc_inverse_mass"'
|
|
# print some information
|
|
mpi.report(f'{"Basis choice [h (Hamiltonian), w (Wannier)]:":<60s} {oc_basis}')
|
|
mpi.report(f'{"Contributions from [intra(-band), inter(-band), both]:":<60s} {oc_select}')
|
|
|
|
# recompute sum_k instances on denser grid
|
|
sum_k, _ = recompute_w90_input_on_different_mesh(sum_k, w90_params['seedname'], nk_optics=w90_params['nk_optics'], pathname=pathname,
|
|
calc_velocity=calc_velocity, calc_inverse_mass=calc_inverse_mass, oc_select=oc_select, oc_basis=oc_basis)
|
|
|
|
# k-dependent-projections.
|
|
# to be checked. But this should be obsolete atm, works for both cases
|
|
# k_dep_projection is nowhere used
|
|
# assert sum_k.k_dep_projection == 0, "transport_distribution: k dependent projection is not implemented!"
|
|
|
|
return sum_k
|
|
|
|
# Uses .data of only GfReFreq objects.
|
|
|
|
|
|
def transport_distribution(sum_k, beta, directions=['xx'], energy_window=None, Om_mesh=[0.0], with_Sigma=False, n_om=None, broadening=0.0, code='wien2k', mode='optics', raman_options={}):
|
|
r"""
|
|
Calculates the transport distribution
|
|
|
|
.. math::
|
|
\Gamma_{\alpha\beta}\left(\omega+\Omega/2, \omega-\Omega/2\right) = \frac{1}{V} \sum_k Tr\left(v_{k,\alpha}A_{k}(\omega+\Omega/2)v_{k,\beta}A_{k}\left(\omega-\Omega/2\right)\right)
|
|
|
|
in the direction :math:`\alpha\beta`. The velocities :math:`v_{k}` are read from the transport subgroup of the hdf5 archive.
|
|
|
|
Parameters
|
|
----------
|
|
sum_k : sum_k object
|
|
triqs SumkDFT object
|
|
beta : double
|
|
Inverse temperature :math:`\beta`.
|
|
directions : list of string, optional
|
|
:math:`\alpha\beta` e.g.: ['xx','yy','zz','xy','xz','yz'].
|
|
energy_window : list of double, optional
|
|
Specifies the upper and lower limit of the frequency integration for :math:`\Omega=0.0`. The window is automatically enlarged by the largest :math:`\Omega` value,
|
|
hence the integration is performed in the interval [energy_window[0]-max(Om_mesh), energy_window[1]+max(Om_mesh)].
|
|
Om_mesh : list of double, optional
|
|
:math:`\Omega` frequency mesh of the optical conductivity. For the conductivity and the Seebeck coefficient :math:`\Omega=0.0` has to be
|
|
part of the mesh. In the current version Om_mesh is repined to the mesh provided by the self-energy! The actual mesh is printed on the screen and given as output.
|
|
with_Sigma : boolean, optional
|
|
Determines whether the calculation is performed with or without self energy. If this parameter is set to False the self energy is set to zero (i.e. the DFT band
|
|
structure :math:`A(k,\omega)` is used). Note: For with_Sigma=False it is necessary to specify the parameters energy_window, n_om and broadening.
|
|
n_om : integer, optional
|
|
Number of equidistant frequency points in the interval [energy_window[0]-max(Om_mesh), energy_window[1]+max(Om_mesh)]. This parameters is only used if
|
|
with_Sigma = False.
|
|
broadening : double, optional
|
|
Lorentzian broadening. It is necessary to specify the boradening if with_Sigma = False, otherwise this parameter can be set to 0.0.
|
|
code : string
|
|
DFT code from which velocities are being read. Options: 'wien2k', 'wannier90'
|
|
mode : string
|
|
Choose between optical ('optics') or Raman ('raman') transport distribution.
|
|
raman_options : dictionary
|
|
additional keywords necessary in case mode == 'raman'. Depending on the situation, the allow keys could be 'custom_dir'.
|
|
|
|
Returns
|
|
-------
|
|
Gamma_w : dictionary of double matrices
|
|
transport distribution function in each direction, frequency given by Om_mesh_out and omega
|
|
omega : list of double
|
|
omega vector
|
|
Om_mesh_out : list of double
|
|
frequency mesh of the optical conductivity recomputed on the mesh provided by the self energy
|
|
"""
|
|
|
|
mpi.report('Computing transport distribution...')
|
|
|
|
n_inequiv_spin_blocks = sum_k.SP + 1 - sum_k.SO
|
|
# up and down are equivalent if SP = 0
|
|
|
|
# positive om_mesh
|
|
assert all(
|
|
Om >= 0.0 for Om in Om_mesh), "transport_distribution: Om_mesh should not contain negative values!"
|
|
# Check if energy_window is sufficiently large and correct
|
|
if (energy_window[0] >= energy_window[1] or energy_window[0] >= 0 or energy_window[1] <= 0):
|
|
assert 0, "transport_distribution: energy_window wrong!"
|
|
|
|
if (abs(fermi_dis(energy_window[0], beta) * fermi_dis(-energy_window[0], beta)) > 1e-5
|
|
or abs(fermi_dis(energy_window[1], beta) * fermi_dis(-energy_window[1], beta)) > 1e-5):
|
|
mpi.report(
|
|
"\n####################################################################")
|
|
mpi.report(
|
|
"transport_distribution: WARNING - energy window might be too narrow!")
|
|
mpi.report(
|
|
"####################################################################\n")
|
|
|
|
# ----------------- calculate A(k,w) -----------------------
|
|
|
|
# Define mesh for Green's function and in the specified energy window
|
|
if (with_Sigma == True):
|
|
omega = numpy.array([round(x.real, 12)
|
|
for x in sum_k.Sigma_imp[0].mesh])
|
|
mesh = None
|
|
mu = sum_k.chemical_potential
|
|
n_om = len(omega)
|
|
mpi.report("Using omega mesh provided by Sigma!")
|
|
|
|
if energy_window:
|
|
# Find according window in Sigma mesh
|
|
ioffset = numpy.sum(
|
|
omega < energy_window[0] - max(Om_mesh))
|
|
omega = omega[numpy.logical_and(
|
|
omega >= energy_window[0] - max(Om_mesh), omega <= energy_window[1] + max(Om_mesh))]
|
|
n_om = len(omega)
|
|
|
|
# Truncate Sigma to given omega window
|
|
# In the future there should be an option in gf to manipulate the mesh (e.g. truncate) directly.
|
|
# For now we stick with this:
|
|
for icrsh in range(sum_k.n_corr_shells):
|
|
Sigma_save = sum_k.Sigma_imp[icrsh].copy()
|
|
spn = sum_k.spin_block_names[sum_k.corr_shells[icrsh]['SO']]
|
|
def glist(): return [GfReFreq(target_shape=(block_dim, block_dim), window=(omega[
|
|
0], omega[-1]), n_points=n_om) for block, block_dim in sum_k.gf_struct_sumk[icrsh]]
|
|
sum_k.Sigma_imp[icrsh] = BlockGf(
|
|
name_list=spn, block_list=glist(), make_copies=False)
|
|
for i, g in sum_k.Sigma_imp[icrsh]:
|
|
for iL in g.indices[0]:
|
|
for iR in g.indices[0]:
|
|
for iom in range(n_om):
|
|
g.data[iom, int(iL), int(iR)] = Sigma_save[
|
|
i].data[ioffset + iom, int(iL), int(iR)]
|
|
else:
|
|
assert n_om is not None, "transport_distribution: Number of omega points (n_om) needed to calculate transport distribution!"
|
|
assert energy_window is not None, "transport_distribution: Energy window needed to calculate transport distribution!"
|
|
assert broadening != 0.0 and broadening is not None, "transport_distribution: Broadening necessary to calculate transport distribution!"
|
|
omega = numpy.linspace(
|
|
energy_window[0] - max(Om_mesh), energy_window[1] + max(Om_mesh), n_om)
|
|
mesh = MeshReFreq(energy_window[0] -
|
|
max(Om_mesh), energy_window[1] + max(Om_mesh), n_om)
|
|
mu = 0.0
|
|
|
|
dir_to_int = {'x': 0, 'y': 1, 'z': 2}
|
|
|
|
# Define mesh for optic conductivity
|
|
d_omega = round(numpy.abs(omega[0] - omega[1]), 12)
|
|
iOm_mesh = numpy.array([round((Om / d_omega), 0) for Om in Om_mesh])
|
|
temp_Om_mesh = iOm_mesh * d_omega
|
|
|
|
if mpi.is_master_node():
|
|
print("Chemical potential: ", mu)
|
|
print("Using n_om = %s points in the energy_window [%s,%s]" % (
|
|
n_om, omega[0], omega[-1]), end=' ')
|
|
print("where the omega vector is:")
|
|
print(omega)
|
|
print("Calculation requested for Omega mesh: ", numpy.array(Om_mesh))
|
|
print("Omega mesh automatically repined to: ", temp_Om_mesh)
|
|
|
|
Gamma_w = {direction: numpy.zeros((len(temp_Om_mesh), n_om),
|
|
dtype=numpy.float64) for direction in directions}
|
|
|
|
# Sum over all k-points
|
|
ikarray = numpy.array(list(range(sum_k.n_k)))
|
|
for ik in mpi.slice_array(ikarray):
|
|
# Calculate G_w for ik and initialize A_kw
|
|
G_w = sum_k.lattice_gf(ik, mu, broadening=broadening, mesh=mesh, with_Sigma=with_Sigma)
|
|
A_kw = [numpy.zeros((sum_k.n_orbitals[ik][isp], sum_k.n_orbitals[ik][isp], n_om), dtype=numpy.complex128)
|
|
for isp in range(n_inequiv_spin_blocks)]
|
|
|
|
for isp in range(n_inequiv_spin_blocks):
|
|
# copy data from G_w (swapaxes is used to have omega in the 3rd
|
|
# dimension)
|
|
A_kw[isp] = copy.deepcopy(G_w[sum_k.spin_block_names[sum_k.SO][
|
|
isp]].data.swapaxes(0, 1).swapaxes(1, 2))
|
|
# calculate A(k,w) for each frequency
|
|
for iw in range(n_om):
|
|
A_kw[isp][:, :, iw] = -1.0 / (2.0 * numpy.pi * 1j) * (
|
|
A_kw[isp][:, :, iw] - numpy.conjugate(numpy.transpose(A_kw[isp][:, :, iw])))
|
|
# Akw_write[ik] = A_kw[isp].copy() * sum_k.bz_weights[ik]
|
|
|
|
b_min = max(sum_k.band_window[isp][
|
|
ik, 0], sum_k.band_window_optics[isp][ik, 0])
|
|
b_max = min(sum_k.band_window[isp][
|
|
ik, 1], sum_k.band_window_optics[isp][ik, 1])
|
|
A_i = slice(
|
|
b_min - sum_k.band_window[isp][ik, 0], b_max - sum_k.band_window[isp][ik, 0] + 1)
|
|
v_i = slice(b_min - sum_k.band_window_optics[isp][
|
|
ik, 0], b_max - sum_k.band_window_optics[isp][ik, 0] + 1)
|
|
|
|
if mode in ('optics'):
|
|
# loop over all symmetries
|
|
for R in sum_k.rot_symmetries:
|
|
# get transformed velocity under symmetry R
|
|
if code in ('wien2k'):
|
|
vel_R = copy.deepcopy(sum_k.velocities_k[isp][ik])
|
|
elif code in ('wannier90'):
|
|
vel_R = copy.deepcopy(sum_k.velocities_k[ik])
|
|
for nu1 in range(sum_k.band_window_optics[isp][ik, 1] - sum_k.band_window_optics[isp][ik, 0] + 1):
|
|
for nu2 in range(sum_k.band_window_optics[isp][ik, 1] - sum_k.band_window_optics[isp][ik, 0] + 1):
|
|
vel_R[nu1][nu2][:] = numpy.dot(
|
|
R, vel_R[nu1][nu2][:])
|
|
|
|
# calculate Gamma_w for each direction from the velocities
|
|
# vel_R and the spectral function A_kw
|
|
for direction in directions:
|
|
for iw in range(n_om):
|
|
for iq in range(len(temp_Om_mesh)):
|
|
if (iw + iOm_mesh[iq] >= n_om or omega[iw] < -temp_Om_mesh[iq] + energy_window[0] or omega[iw] > temp_Om_mesh[iq] + energy_window[1]):
|
|
continue
|
|
|
|
Gamma_w[direction][iq, iw] += (numpy.dot(numpy.dot(numpy.dot(vel_R[v_i, v_i, dir_to_int[direction[0]]], A_kw[isp][A_i, A_i, int(iw + iOm_mesh[iq])]),
|
|
vel_R[v_i, v_i, dir_to_int[direction[1]]]), A_kw[isp][A_i, A_i, iw]).trace().real * sum_k.bz_weights[ik])
|
|
elif mode in ('raman'):
|
|
if code in ('wannier90'):
|
|
assert hasattr(sum_k,"inverse_mass"), 'inverse_mass not available in sum_k. Set calc_inverse_mass=True in w90_params.'
|
|
elif code in ('wien2k'):
|
|
assert 0, 'Raman for wien2k not yet implemented'
|
|
# loop over all symmetries
|
|
for R in sum_k.rot_symmetries:
|
|
for direction in directions:
|
|
# calculate the raman vertex for each direction
|
|
vert = raman_vertex(sum_k, ik, direction, code, isp, raman_options)
|
|
|
|
for iw in range(n_om):
|
|
for iq in range(len(Om_mesh)):
|
|
if (iw + iOm_mesh[iq] >= n_om or omega[iw] < -Om_mesh[iq] + energy_window[0] or omega[iw] > Om_mesh[iq] + energy_window[1]):
|
|
continue
|
|
|
|
Gamma_w[direction][iq, iw] += (numpy.dot(numpy.dot(numpy.dot(vert[v_i, v_i], A_kw[isp][A_i, A_i, int(iw + iOm_mesh[iq])]),
|
|
vert[v_i, v_i]), A_kw[isp][A_i, A_i, iw]).trace().real * sum_k.bz_weights[ik])
|
|
|
|
for direction in directions:
|
|
Gamma_w[direction] = (mpi.all_reduce(Gamma_w[direction]) / sum_k.cell_vol / sum_k.n_symmetries)
|
|
|
|
return Gamma_w, omega, temp_Om_mesh
|
|
|
|
|
|
def transport_function(beta, directions, hopping, velocities, energy_window, n_om, rot_symmetries):
|
|
r"""
|
|
Calculates the transport function
|
|
|
|
.. math::
|
|
\Phi_\alpha\beta(\omega) = \sum_k v_{k,\alpha} v_{k,\beta} \delta(\omega-\varepsilon)
|
|
|
|
in the direction :math:`\alpha\beta`.
|
|
|
|
Parameters
|
|
----------
|
|
beta : double
|
|
Inverse temperature :math:`\beta`.
|
|
directions : list of string, optional
|
|
:math:`\alpha\beta` e.g.: ['xx','yy','zz','xy','xz','yz'].
|
|
hopping : double array
|
|
Hamiltonian in band basis :math:`\epsilon(k)`
|
|
veolcities : complex array
|
|
matrix elements derivative of Hamiltonian :math:`\frac{d\epsilon(k)}{dk}`
|
|
energy_window : list of double
|
|
Specifies the upper and lower limit of the frequency integration for :math:`\Omega=0.0`. The window is automatically enlarged by the largest :math:`\Omega` value,
|
|
hence the integration is performed in the interval [energy_window[0]-max(Om_mesh), energy_window[1]+max(Om_mesh)].
|
|
n_om : integer
|
|
Number of equidistant frequency points in the interval [energy_window[0]-max(Om_mesh), energy_window[1]+max(Om_mesh)]. This parameters is only used if
|
|
with_Sigma = False.
|
|
rot_symmetries : list of 3 x 3 matrices
|
|
rotational symmetries to restore the full FBZ
|
|
|
|
Returns
|
|
-------
|
|
transp_func : dictionary of double array
|
|
transport function in each direction, frequencies given by energy_window
|
|
"""
|
|
|
|
mpi.report('Computing transport function...')
|
|
|
|
# check that velocities are computed on the FBZ
|
|
assert numpy.shape(rot_symmetries)[
|
|
0] == 1, 'Using symmetries currently not implemented for transport function.'
|
|
|
|
dir_to_int = {'x': 0, 'y': 1, 'z': 2}
|
|
|
|
tol = 1/beta
|
|
orb_1, orb_2 = velocities.shape[1:3]
|
|
ws = numpy.linspace(energy_window[0], energy_window[1], n_om)
|
|
transp_func = {direction: numpy.zeros(shape=(ws.shape[0])) for direction in directions}
|
|
|
|
for ct, w in enumerate(ws):
|
|
idx = numpy.where(numpy.abs(hopping[:, 0, range(orb_1), range(orb_2)].real - w) <= tol)
|
|
fermi_wg = fermi_dis(hopping[:, 0, range(orb_1), range(orb_2)]
|
|
[idx].real - w, beta, 1)/fermi_dis(0., beta, 1)
|
|
for direction in directions:
|
|
dir_a, dir_b = [dir_to_int[x] for x in direction]
|
|
matrix_product = numpy.einsum(
|
|
'kmn, kno -> kmo', velocities[:, :, :, dir_a], velocities[:, :, :, dir_b])
|
|
transp_func[direction][ct] = numpy.sum(
|
|
fermi_wg * matrix_product[:, range(orb_1), range(orb_2)][idx]).real
|
|
|
|
return transp_func
|
|
|
|
|
|
def transport_coefficient(Gamma_w, omega, Om_mesh, spin_polarization, direction, iq, n, beta, method=None):
|
|
r"""
|
|
Calculates the transport coefficient A_n in a given direction for a given :math:`\Omega`. The required members (Gamma_w, directions, Om_mesh) have to be obtained first
|
|
by calling the function :meth:`transport_distribution <dft.sumk_dft_tools.SumkDFTTools.transport_distribution>`. For n>0 A is set to NaN if :math:`\Omega` is not 0.0.
|
|
|
|
Parameters
|
|
----------
|
|
Gamma_w : dictionary of double matrices
|
|
transport distribution function in each direction, frequency given by Om_mesh_out and omega
|
|
omega : list of double
|
|
omega vector
|
|
Om_mesh : list of double
|
|
frequency mesh of the optical conductivity recomputed on the mesh provided by the self energy
|
|
spin_polarization : integer
|
|
Boolean-type integer whether system is spin-polarized or not
|
|
direction : string
|
|
:math:`\alpha\beta` e.g.: 'xx','yy','zz','xy','xz','yz'.
|
|
iq : integer
|
|
Index of :math:`\Omega` point in the member Om_mesh.
|
|
n : integer
|
|
Number of the desired moment of the transport distribution.
|
|
beta : double
|
|
Inverse temperature :math:`\beta`.
|
|
method : string
|
|
Integration method: cubic spline and scipy.integrate.quad ('quad'), simpson rule ('simpson'), trapezoidal rule ('trapz'), rectangular integration (otherwise)
|
|
Note that the sampling points of the the self-energy are used!
|
|
|
|
Returns
|
|
-------
|
|
A : double
|
|
Transport coefficient.
|
|
"""
|
|
|
|
from scipy.interpolate import interp1d
|
|
from scipy.integrate import simpson, quad
|
|
|
|
if not (mpi.is_master_node()):
|
|
return None
|
|
|
|
if (Om_mesh[iq] == 0.0 or n == 0.0):
|
|
A = 0.0
|
|
# setup the integrand
|
|
if (Om_mesh[iq] == 0.0):
|
|
A_int = Gamma_w[direction][iq] * \
|
|
(fermi_dis(omega, beta) * fermi_dis(-omega, beta)) * (omega * beta)**n
|
|
elif (n == 0.0):
|
|
A_int = Gamma_w[direction][iq] * (fermi_dis(omega, beta) -
|
|
fermi_dis(omega + Om_mesh[iq], beta)) / (Om_mesh[iq] * beta)
|
|
|
|
# w-integration
|
|
if method == 'quad':
|
|
# quad on interpolated w-points with cubic spline
|
|
A_int_interp = interp1d(omega, A_int, kind='cubic')
|
|
A = quad(A_int_interp, min(omega), max(omega),
|
|
epsabs=1.0e-12, epsrel=1.0e-12, limit=500)
|
|
A = A[0]
|
|
elif method == 'simpson':
|
|
# simpson rule for w-grid
|
|
A = simpson(A_int, omega)
|
|
elif method == 'trapz':
|
|
# trapezoidal rule for w-grid
|
|
A = numpy.trapz(A_int, omega)
|
|
else:
|
|
# rectangular integration for w-grid (orignal implementation)
|
|
d_w = omega[1] - omega[0]
|
|
for iw in range(Gamma_w[direction].shape[1]):
|
|
A += A_int[iw] * d_w
|
|
A = A * numpy.pi * (2.0 - spin_polarization)
|
|
else:
|
|
A = numpy.nan
|
|
return A
|
|
|
|
|
|
def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, method=None, mode='optics', optic_kappa=False):
|
|
r"""
|
|
Calculates the Seebeck coefficient and the optical conductivity by calling
|
|
:meth:`transport_coefficient <dft.sumk_dft_tools.SumkDFTTools.transport_coefficient>`.
|
|
The required members (Gamma_w, directions, Om_mesh) have to be obtained first by calling the function
|
|
:meth:`transport_distribution <dft.sumk_dft_tools.SumkDFTTools.transport_distribution>`.
|
|
|
|
Parameters
|
|
----------
|
|
Gamma_w : dictionary of double matrices
|
|
transport distribution function in each direction, frequency given by Om_mesh_out and omega
|
|
omega : list of double
|
|
omega vector
|
|
Om_mesh : list of double
|
|
frequency mesh of the optical conductivity recomputed on the mesh provided by the self energy
|
|
spin_polarization : integer
|
|
Boolean-type integer whether system is spin-polarized or not
|
|
directions : list of string, optional
|
|
:math:`\alpha\beta` e.g.: ['xx','yy','zz','xy','xz','yz'].
|
|
beta : double
|
|
Inverse temperature :math:`\beta`.
|
|
method : string
|
|
Integration method: cubic spline and scipy.integrate.quad ('quad'), simpson rule ('simpson'), trapezoidal rule ('trapz'), rectangular integration (otherwise)
|
|
Note that the sampling points of the the self-energy are used!
|
|
mode : string
|
|
Choose between optical conductivity/seebeck/Kappa ('optics') or Raman conductivity ('raman')
|
|
optic_kappa : bool
|
|
If calculates $\kappa(\omega)$ or not. Only if mode is 'optics'.
|
|
|
|
Returns
|
|
-------
|
|
optic_cond : dictionary of double vectors
|
|
Optical conductivity in each direction and frequency given by Om_mesh.
|
|
|
|
seebeck : dictionary of double
|
|
Seebeck coefficient in each direction. If zero is not present in Om_mesh the Seebeck coefficient is set to NaN.
|
|
|
|
kappa : dictionary of double.
|
|
thermal conductivity in each direction. If zero is not present in Om_mesh the thermal conductivity is set to NaN.
|
|
If optic_kappa is True, then returns the kappa for all frequencies.
|
|
"""
|
|
|
|
mpi.report('Computing optical conductivity and kinetic coefficients...')
|
|
|
|
if not (mpi.is_master_node()):
|
|
return None, None, None
|
|
|
|
n_q = Gamma_w[directions[0]].shape[0]
|
|
|
|
# initialization
|
|
A0 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
|
# The conductivity is proportional to A0, A1 and A2 are only needed for the Seebeck coefficient and thermal conductivity
|
|
if mode in ('optics'):
|
|
A1 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
|
A2 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
|
optic_cond = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
|
seebeck = {direction: numpy.nan for direction in directions}
|
|
kappa = {direction: numpy.nan for direction in directions}
|
|
if optic_kappa: optic_kappa = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
|
|
|
for direction in directions:
|
|
for iq in range(n_q):
|
|
A0[direction][iq] = transport_coefficient(
|
|
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=0, beta=beta, method=method)
|
|
A1[direction][iq] = transport_coefficient(
|
|
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=1, beta=beta, method=method)
|
|
A2[direction][iq] = transport_coefficient(
|
|
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=2, beta=beta, method=method)
|
|
print("A_0 in direction %s for Omega = %.2f %e a.u." %
|
|
(direction, Om_mesh[iq], A0[direction][iq]))
|
|
print("A_1 in direction %s for Omega = %.2f %e a.u." %
|
|
(direction, Om_mesh[iq], A1[direction][iq]))
|
|
print("A_2 in direction %s for Omega = %.2f %e a.u." %
|
|
(direction, Om_mesh[iq], A2[direction][iq]))
|
|
if ~numpy.isnan(A1[direction][iq]):
|
|
# Seebeck and kappa are overwritten if there is more than one Omega =
|
|
# 0 in Om_mesh
|
|
seebeck[direction] = - A1[direction][iq] / A0[direction][iq] * 86.17
|
|
kappa[direction] = A2[direction][iq] - \
|
|
A1[direction][iq]*A1[direction][iq]/A0[direction][iq]
|
|
kappa[direction] *= 293178.0
|
|
|
|
# factor for optical conductivity: hbar * velocity_Hartree_to_SI * volume_Hartree_to_SI * m_to_cm * 10^-4 final unit
|
|
convert_to_SI = cst.hbar * (cst.c * cst.fine_structure) ** 2 * \
|
|
(1/cst.physical_constants['Bohr radius'][0]) ** 3 * 1e-6
|
|
optic_cond[direction] = beta * convert_to_SI * A0[direction]
|
|
if optic_kappa: optic_kappa[direction] = (A2[direction] - A1[direction]*A1[direction]/A0[direction])*293178.0
|
|
for iq in range(n_q):
|
|
print("Conductivity in direction %s for Omega = %.2f %f x 10^4 Ohm^-1 cm^-1" %
|
|
(direction, Om_mesh[iq], optic_cond[direction][iq]))
|
|
if optic_kappa:
|
|
print("kappa(Omega) in direction %s for Omega = %.2f %f W/(m * K)" %
|
|
(direction, Om_mesh[iq], optic_kappa[direction][iq]))
|
|
if not (numpy.isnan(A1[direction][iq])):
|
|
print("Seebeck in direction %s for Omega = 0.00 %f x 10^(-6) V/K" %
|
|
(direction, seebeck[direction]))
|
|
print("kappa in direction %s for Omega = 0.00 %f W/(m * K)" %
|
|
(direction, kappa[direction]))
|
|
if optic_kappa:
|
|
return optic_cond, seebeck, optic_kappa
|
|
else:
|
|
return optic_cond, seebeck, kappa
|
|
elif mode in ('raman'):
|
|
# TODO: express in SI units
|
|
raman_cond = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
|
|
|
for direction in directions:
|
|
for iq in range(n_q):
|
|
A0[direction][iq] = transport_coefficient(Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=0, beta=beta, method=method)
|
|
print("A_0 in direction %s for Omega = %.2f %e atomic units" % (direction, Om_mesh[iq], A0[direction][iq]))
|
|
raman_cond[direction] = beta * A0[direction]
|
|
for iq in range(n_q):
|
|
print("Raman conductivity in direction %s for Omega = %.4f %f atomic units" % (direction, Om_mesh[iq], raman_cond[direction][iq]))
|
|
|
|
return raman_cond
|