3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-16 15:41:46 +01:00
Olivier Parcollet f2c7d449cc First commit : triqs libs version 1.0 alpha1
for earlier commits, see TRIQS0.x repository.
2013-07-17 19:24:07 +02:00

45 lines
1.3 KiB
Python

import numpy
from math import pi
from cmath import sqrt, log
from pytriqs.gf.local import *
from pytriqs.gf.local.descriptors import Function
beta = 100 # Inverse temperature
L = 101 # Number of Matsubara frequencies used in the Pade approximation
eta = 0.01 # Imaginary frequency shift
## Test Green's functions ##
# Two Lorentzians
def GLorentz(z):
return 0.7/(z-2.6+0.3*1j) + 0.3/(z+3.4+0.1*1j)
# Semicircle
def GSC(z):
return 2.0*(z + sqrt(1-z**2)*(log(1-z) - log(-1+z))/pi)
# A superposition of GLorentz(z) and GSC(z) with equal weights
def G(z):
return 0.5*GLorentz(z) + 0.5*GSC(z)
# Matsubara GF
gm = GfImFreq(indices = [0], beta = beta, name = "gm")
gm <<= Function(G)
gm.tail.zero()
gm.tail[1] = numpy.array([[1.0]])
# Real frequency BlockGf(reference)
gr = GfReFreq(indices = [0], window = (-5.995, 5.995), n_points = 1200, name = "gr")
gr <<= Function(G)
gr.tail.zero()
gr.tail[1] = numpy.array([[1.0]])
# Analytic continuation of gm
g_pade = GfReFreq(indices = [0], window = (-5.995, 5.995), n_points = 1200, name = "g_pade")
g_pade.set_from_pade(gm, n_points = L, freq_offset = eta)
# Comparison plot
from pytriqs.plot.mpl_interface import oplot
oplot(gr[0,0], '-o', RI = 'S', name = "Original DOS")
oplot(g_pade[0,0], '-x', RI = 'S', name = "Pade-reconstructed DOS")