mirror of
https://github.com/triqs/dft_tools
synced 2024-12-25 13:53:40 +01:00
87dc9aeaa5
- binning, jackknife, autocorrelation, observable. - DRAFT only : in development, debug. Doc to be written.
33 lines
1.3 KiB
C++
33 lines
1.3 KiB
C++
#pragma once
|
|
#include <boost/random/variate_generator.hpp>
|
|
#include <boost/random/mersenne_twister.hpp>
|
|
#include <boost/random/normal_distribution.hpp>
|
|
using uint = unsigned int;
|
|
|
|
template <typename TimeSeries> void boost_independent_gaussian_vector(TimeSeries& t, int seed) {
|
|
boost::variate_generator<boost::mt19937, boost::normal_distribution<>> generator((boost::mt19937(seed)),
|
|
(boost::normal_distribution<>()));
|
|
for (size_t i = 0; i < t.size(); ++i) t[i] = generator();
|
|
}
|
|
|
|
template <typename TimeSeries> void correlated_gaussian_vector(TimeSeries& t, int seed, size_t correlation_length) {
|
|
boost_independent_gaussian_vector(t, seed);
|
|
TimeSeries B(t.size());
|
|
B[0] = t[0];
|
|
double f = exp(-1. / correlation_length);
|
|
for (size_t i = 1; i < t.size(); i++) B[i] = f * B[i - 1] + sqrt(1 - f * f) * t[i];
|
|
t = B;
|
|
}
|
|
|
|
|
|
template <typename TimeSeries> void correlated_gaussian_vector(TimeSeries& t, int seed, size_t correlation_length, double avg) {
|
|
boost_independent_gaussian_vector(t, seed);
|
|
TimeSeries B(t.size());
|
|
B[0] = t[0];
|
|
double f = exp(-1. / correlation_length);
|
|
for (size_t i = 1; i < t.size(); i++) B[i] = f * B[i - 1] + sqrt(1 - f * f) * t[i];
|
|
t = B;
|
|
for (size_t i = 1; i < t.size(); i++) t[i] = t[i] + avg;
|
|
}
|
|
|