mirror of
https://github.com/triqs/dft_tools
synced 2024-12-25 13:53:40 +01:00
15f0899016
When an object with __hdf_write__ was written in an archive, the corresponding key was not cached. Therefore, one could not access the object which had just been written.
412 lines
17 KiB
Python
412 lines
17 KiB
Python
|
|
################################################################################
|
|
#
|
|
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
#
|
|
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
|
|
#
|
|
# TRIQS is free software: you can redistribute it and/or modify it under the
|
|
# terms of the GNU General Public License as published by the Free Software
|
|
# Foundation, either version 3 of the License, or (at your option) any later
|
|
# version.
|
|
#
|
|
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
# details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
################################################################################
|
|
|
|
import sys,numpy,string
|
|
from hdf_archive_basic_layer_h5py import HDFArchiveGroupBasicLayer
|
|
|
|
from pytriqs.archive.hdf_archive_schemes import hdf_scheme_access, register_class
|
|
|
|
# -------------------------------------------
|
|
#
|
|
# Various wrappers for basic python types.
|
|
#
|
|
# --------------------------------------------
|
|
def _my_str(ll, digs = 10) :
|
|
ns = str(ll)
|
|
for ii in xrange(digs-len(ns)): ns = '0'+ns
|
|
return ns
|
|
|
|
class PythonListWrap:
|
|
def __init__(self,ob) :
|
|
self.ob = ob
|
|
def __reduce_to_dict__(self) :
|
|
return dict( [ (_my_str(n),v) for (n,v) in enumerate (self.ob)])
|
|
@classmethod
|
|
def __factory_from_dict__(cls,D) :
|
|
return [x for (n,x) in sorted(D.items())]
|
|
|
|
class PythonTupleWrap:
|
|
def __init__(self,ob) :
|
|
self.ob = ob
|
|
def __reduce_to_dict__(self) :
|
|
return dict( [ (_my_str(n),v) for (n,v) in enumerate (self.ob)])
|
|
@classmethod
|
|
def __factory_from_dict__(cls,D) :
|
|
return tuple([x for (n,x) in sorted(D.items())])
|
|
|
|
class PythonDictWrap:
|
|
def __init__(self,ob) :
|
|
self.ob = ob
|
|
def __reduce_to_dict__(self) :
|
|
return dict( [ (str(n),v) for (n,v) in self.ob.items()])
|
|
@classmethod
|
|
def __factory_from_dict__(cls,D) :
|
|
return dict([(n,x) for (n,x) in D.items()])
|
|
|
|
register_class (PythonListWrap)
|
|
register_class (PythonTupleWrap)
|
|
register_class (PythonDictWrap)
|
|
|
|
# -------------------------------------------
|
|
#
|
|
# A view of a subgroup of the archive
|
|
#
|
|
# --------------------------------------------
|
|
|
|
class HDFArchiveGroup (HDFArchiveGroupBasicLayer) :
|
|
"""
|
|
"""
|
|
_wrappedType = { type([]) : PythonListWrap, type(()) : PythonTupleWrap, type({}) : PythonDictWrap}
|
|
_MaxLengthKey = 500
|
|
|
|
def __init__(self, parent, subpath) :
|
|
self.options = parent.options
|
|
HDFArchiveGroupBasicLayer.__init__(self, parent, subpath)
|
|
self.options = parent.options
|
|
self.key_as_string_only = self.options['key_as_string_only']
|
|
self._reconstruct_python_objects = self.options['reconstruct_python_object']
|
|
self.is_top_level = False
|
|
|
|
#-------------------------------------------------------------------------
|
|
def _key_cipher(self,key) :
|
|
if key in self.ignored_keys :
|
|
raise KeyError, "key %s is reserved"%key
|
|
if self.key_as_string_only : # for bacward compatibility
|
|
if type(key) not in [ type('') , type(u'a')] :
|
|
raise KeyError, "Key must be string only !"
|
|
return key
|
|
r = repr(key)
|
|
if len (r)> self._MaxLengthKey :
|
|
raise KeyError, "The Key is too large !"
|
|
# check that the key is ok (it can be reconstructed)
|
|
try :
|
|
ok = eval(r) == key
|
|
except :
|
|
ok =False
|
|
if not ok : raise KeyError, "The Key *%s*can not be serialized properly by repr !"%key
|
|
return r
|
|
|
|
#-------------------------------------------------------------------------
|
|
def _key_decipher(self,key) :
|
|
return key if self.key_as_string_only else eval(key)
|
|
|
|
#-------------------------------------------------------------------------
|
|
def __contains__(self,key) :
|
|
key= self._key_cipher(key)
|
|
return key in self.keys()
|
|
|
|
#-------------------------------------------------------------------------
|
|
def values(self) :
|
|
"""
|
|
Generator returning the values in the group
|
|
"""
|
|
def res() :
|
|
for name in self.keys() :
|
|
yield self[name]
|
|
return res()
|
|
|
|
#-------------------------------------------------------------------------
|
|
def items(self) :
|
|
"""
|
|
Generator returning couples (key, values) in the group.
|
|
"""
|
|
def res() :
|
|
for name in self.keys():
|
|
yield name, self[name]
|
|
return res()
|
|
|
|
#-------------------------------------------------------------------------
|
|
def __iter__(self) :
|
|
"""Returns the keys, like a dictionary"""
|
|
def res() :
|
|
for name in self.keys() :
|
|
yield name
|
|
return res()
|
|
|
|
#-------------------------------------------------------------------------
|
|
def __len__(self) :
|
|
"""Returns the length of the keys list """
|
|
return len(self.keys())
|
|
|
|
#-------------------------------------------------------------------------
|
|
def update(self,object_with_dict_protocol):
|
|
for k,v in object_with_dict_protocol.items() : self[k] = v
|
|
|
|
#-------------------------------------------------------------------------
|
|
def __delitem__(self,key) :
|
|
key= self._key_cipher(key)
|
|
self._clean_key(key,True)
|
|
|
|
#-------------------------------------------------------------------------
|
|
def __setitem__(self,key,val) :
|
|
key= self._key_cipher(key)# first look if key is a string or key
|
|
|
|
if key in self.keys() :
|
|
if self.options['do_not_overwrite_entries'] : raise KeyError, "key %s already exists"%key
|
|
self._clean_key(key) # clean things
|
|
|
|
# Transform list, dict, etc... into a wrapped type that will allow HDF reduction
|
|
if type(val) in self._wrappedType: val = self._wrappedType[type(val)](val)
|
|
|
|
# write the attributes
|
|
def write_attributes(g) :
|
|
"""Use the _hdf5_data_scheme_ if it exists otherwise the class name"""
|
|
ds = val._hdf5_data_scheme_ if hasattr(val,"_hdf5_data_scheme_") else val.__class__.__name__
|
|
try :
|
|
sch = hdf_scheme_access(ds)
|
|
except :
|
|
err = """
|
|
You are trying to store an object of type "%s", with the TRIQS_HDF5_data_scheme "%s".
|
|
But that data_scheme is not registered, so you will not be able to reread the class.
|
|
Didn't you forget to register your class in pytriqs.archive.hdf_archive_schemes?
|
|
""" %(val.__class__.__name__,ds)
|
|
raise IOError,err
|
|
g.write_attr("TRIQS_HDF5_data_scheme", ds)
|
|
|
|
if '__write_hdf5__' in dir(val) : # simplest protocol
|
|
val.__write_hdf5__(self._group,key)
|
|
self.cached_keys.append(key) # I need to do this here
|
|
SUB = HDFArchiveGroup(self,key)
|
|
write_attributes(SUB)
|
|
elif '__reduce_to_dict__' in dir(val) : # Is it a HDF_compliant object
|
|
self.create_group(key) # create a new group
|
|
d = val.__reduce_to_dict__() if '__reduce_to_dict__' in dir(val) else dict( [(x,getattr(val,x)) for x in val.__HDF_reduction__])
|
|
if type(d) != type({}) : raise ValueError, " __reduce_to_dict__ method does not return a dict. See the doc !"
|
|
if (d=={}) : raise ValueError, "__reduce_to_dict__ returns an empty dict"
|
|
SUB = HDFArchiveGroup(self,key)
|
|
for n,v in d.items() : SUB[n] = v
|
|
write_attributes(SUB)
|
|
elif type(val)== numpy.ndarray : # it is a numpy
|
|
try :
|
|
self._write_array( key, numpy.array(val,copy=1,order='C') )
|
|
except RuntimeError:
|
|
print "HDFArchive is in trouble with the array %s"%val
|
|
raise
|
|
elif isinstance(val, HDFArchiveGroup) : # will copy the group recursively
|
|
# we could add this for any object that has .items() in fact...
|
|
SUB = HDFArchiveGroup(self, key)
|
|
for k,v in val.items() : SUB[k]=v
|
|
else : # anything else... expected to be a scalar
|
|
try :
|
|
self._write_scalar( key, val)
|
|
except:
|
|
raise #ValueError, "Value %s\n is not of a type suitable to storage in HDF file"%val
|
|
self._flush()
|
|
|
|
#-------------------------------------------------------------------------
|
|
def get_raw (self,key):
|
|
"""Similar to __getitem__ but it does NOT reconstruct the python object,
|
|
it presents it as a subgroup"""
|
|
return self.__getitem1__(key,False)
|
|
|
|
#-------------------------------------------------------------------------
|
|
def __getitem__(self,key) :
|
|
"""Return the object key, possibly reconstructed as a python object if
|
|
it has been properly set up"""
|
|
return self.__getitem1__(key,self._reconstruct_python_objects)
|
|
|
|
#-------------------------------------------------------------------------
|
|
def __getitem1__(self,key,reconstruct_python_object) :
|
|
|
|
if key not in self :
|
|
key = self._key_cipher(key)
|
|
if key not in self : raise KeyError, "Key %s does not exists"%key
|
|
|
|
if self.is_group(key) :
|
|
SUB = HDFArchiveGroup(self,key) # View of the subgroup
|
|
if not reconstruct_python_object : return SUB
|
|
try :
|
|
hdf_data_scheme = SUB.read_attr("TRIQS_HDF5_data_scheme")
|
|
except:
|
|
return SUB
|
|
if hdf_data_scheme :
|
|
try :
|
|
sch = hdf_scheme_access(hdf_data_scheme)
|
|
except :
|
|
print "Warning : The TRIQS_HDF5_data_scheme %s is not recognized. Returning as a group. Hint : did you forgot to import this python class ?"%hdf_data_scheme
|
|
return SUB
|
|
r_class_name = sch.classname
|
|
r_module_name = sch.modulename
|
|
r_readfun = sch.read_fun
|
|
if not (r_class_name and r_module_name) : return SUB
|
|
try :
|
|
exec("from %s import %s as r_class" %(r_module_name,r_class_name)) in globals(), locals()
|
|
except KeyError :
|
|
raise RuntimeError, "I can not find the class %s to reconstruct the object !"%r_class_name
|
|
if r_readfun :
|
|
res = r_readfun(self._group,key)
|
|
elif "__factory_from_dict__" in dir(r_class) :
|
|
f = lambda K : SUB.__getitem1__(K,reconstruct_python_object) if SUB.is_group(K) else SUB._read(K)
|
|
values = dict( (self._key_decipher(K),f(K)) for K in SUB )
|
|
res = r_class.__factory_from_dict__(values)
|
|
else :
|
|
raise ValueError, "Impossible to reread the class %s for group %s and key %s"%(r_class_name,self, key)
|
|
return res
|
|
elif self.is_data(key) :
|
|
return self._read(key)
|
|
else :
|
|
raise KeyError, "Key %s is of unknown type !!"%Key
|
|
|
|
#---------------------------------------------------------------------------
|
|
def __str__(self) :
|
|
def pr(name) :
|
|
if self.is_group(name) :
|
|
return "%s : subgroup"%name
|
|
elif self.is_data(name) : # can be an array of a number
|
|
return "%s : data "%(name)
|
|
else :
|
|
raise ValueError, "oopps %s"%(name)
|
|
|
|
s= "HDFArchive%s with the following content:\n"%(" (partial view)" if self.is_top_level else '')
|
|
s+=string.join([ ' '+ pr(n) for n in self.keys() ], '\n')
|
|
return s
|
|
|
|
#-------------------------------------------------------------------------
|
|
def __repr__(self) :
|
|
return self.__str__()
|
|
|
|
#-------------------------------------------------------------------------
|
|
def apply_on_leaves (self,f) :
|
|
"""
|
|
For each named leaf (name,value) of the tree, it calls f(name,value)
|
|
f should return :
|
|
- `None` : no action is taken
|
|
- an `empty tuple` () : the leaf is removed from the tree
|
|
- an hdf-compliant value : the leaf is replaced by the value
|
|
"""
|
|
def visit_tree(n,d):
|
|
for k in d:# Loop over the subgroups in d
|
|
if d.is_group(k) : visit_tree(k,d[k])
|
|
else :
|
|
r = f(k,d[k])
|
|
if r != None : d[k] = r
|
|
elif r == () : del d[k]
|
|
visit_tree('/',self['/'])
|
|
|
|
|
|
# -------------------------------------------
|
|
#
|
|
# The main class
|
|
#
|
|
# --------------------------------------------
|
|
|
|
class HDFArchive(HDFArchiveGroup):
|
|
"""
|
|
"""
|
|
_class_version = "HDFArchive | 1.0"
|
|
|
|
def __init__(self, url_name, open_flag = 'a', key_as_string_only = True,
|
|
reconstruct_python_object = True, init = {}):
|
|
r"""
|
|
Parameters
|
|
-----------
|
|
url_name : string
|
|
The url of the hdf5 file.
|
|
|
|
* If url is a simple string, it is interpreted as a local file name
|
|
|
|
* If url is a remote url (e.g. `http://ipht.cea.fr/triqs/data/single_site_bethe.output.h5` )
|
|
then the h5 file is downloaded in temporary file and opened.
|
|
In that case, ``open_flag`` must be 'r', read-only mode.
|
|
The temporary file is deleted at exit.
|
|
open_flag : Legal modes: r, w, a (default)
|
|
key_as_string_only : True (default)
|
|
init : any generator of tuple (key,val), e.g. a dict.items().
|
|
It will fill the archive with these values.
|
|
|
|
Attributes
|
|
----------
|
|
LocalFileName : string
|
|
the name of the file or of the local downloaded copy
|
|
url_name : string
|
|
the name of the Url
|
|
|
|
Examples
|
|
--------
|
|
>>> # retrieve a remove archive (in read-only mode) :
|
|
>>> h = HDFArchive( 'http://ipht.cea.fr/triqs/data/single_site_bethe.output.h5')
|
|
>>>
|
|
>>> # full copy of an archive
|
|
>>> HDFArchive( f, 'w', init = HDFArchive(fmp,'r').items()) # full
|
|
>>>
|
|
>>> # partial copy of file of name fmp, with only the key 'G'
|
|
>>> HDFArchive( f, 'w', init = [ (k,v) for (k,v) in HDFArchive(fmp,'r') if k in ['G'] )
|
|
>>>
|
|
>>> # faster version : the object are only retrieved when needed (list comprehension vs iterator comprehension)
|
|
>>> HDFArchive( f, 'w', init = ( (k,v) for (k,v) in HDFArchive(fmp,'r') if k in ['G'] ) )
|
|
>>>
|
|
>>> # partial copy with processing on the fly with the P function
|
|
>>> HDFArchive( f, 'w', init = ( (k,P(v)) for (k,v) in HDFArchive(fmp,'r') if k in ['G'] ) )
|
|
>>>
|
|
>>> # another variant with a filtered dict
|
|
>>> HDFArchive( f, 'w', init = HDFArchive(fmp,'r').items(lambda k : k in ['G'] ))
|
|
|
|
"""
|
|
import os,os.path
|
|
assert open_flag in ['r','w','a'], "Invalid mode"
|
|
assert type(url_name)==type(''), "url_name must be a string"
|
|
|
|
# If it is an url , retrieve if and check mode is read only
|
|
import urllib
|
|
LocalFileName, http_message = urllib.urlretrieve (url_name) if open_flag == 'r' else (url_name, None)
|
|
if LocalFileName != url_name : # this was not a local file, so it must be read only
|
|
assert open_flag == 'r', "You retrieve a distant Url %s which is not local, so it must be read-only. Use 'r' option"%url_name
|
|
|
|
if open_flag == 'w' :
|
|
os.system("rm -f %s"%(os.path.abspath(LocalFileName))) # destroys the file, ignoring errors
|
|
|
|
self._init_root( LocalFileName, open_flag)
|
|
self.options = {'key_as_string_only' : key_as_string_only,
|
|
'do_not_overwrite_entries' : False,
|
|
'reconstruct_python_object': reconstruct_python_object,
|
|
'UseAlpsNotationForComplex' : True
|
|
}
|
|
HDFArchiveGroup.__init__(self,self,"")
|
|
self.is_top_level = True
|
|
for k,v in init : self[k]=v
|
|
|
|
# These two methods are necessary for "with"
|
|
def __enter__(self): return self
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
self._flush()
|
|
self._close()
|
|
|
|
#--------------------------------------------------------------------------------
|
|
|
|
class HDFArchiveInert:
|
|
"""
|
|
A fake class for the node in MPI. It does nothing, but
|
|
permits to write simply :
|
|
a= mpi.bcast(H['a']) # run on all nodes
|
|
-[] : __getitem__ returns self so that H['a']['b'] is ok...
|
|
- setitem : does nothing.
|
|
"""
|
|
def HDFArchive_Inert(self):
|
|
pass
|
|
def __getitem__(self,x) : return self
|
|
def __setitem__(self,k,v) : pass
|
|
|
|
#--------------------------------------------------------------------------------
|
|
|
|
|