mirror of
https://github.com/triqs/dft_tools
synced 2024-11-09 15:43:47 +01:00
290 lines
12 KiB
Fortran
290 lines
12 KiB
Fortran
|
|
c ******************************************************************************
|
|
c
|
|
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
c
|
|
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
|
c
|
|
c TRIQS is free software: you can redistribute it and/or modify it under the
|
|
c terms of the GNU General Public License as published by the Free Software
|
|
c Foundation, either version 3 of the License, or (at your option) any later
|
|
c version.
|
|
c
|
|
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
c details.
|
|
c
|
|
c You should have received a copy of the GNU General Public License along with
|
|
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
c
|
|
c *****************************************************************************/
|
|
|
|
SUBROUTINE timeinv_op(mat,lm,l,isrt)
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
C %% %%
|
|
C %% This subroutine applies the time reversal operation to the %%
|
|
C %% matrix mat which is associated to the l orbital of the atomic %%
|
|
C %% isrt. (matrix size = lm) The matrix mat is assumed to already %%
|
|
C %% be in the desired basis associated to isrt. %%
|
|
C %% The calculation done is : %%
|
|
C %% reptrans*T*conjg((inv(reptrans))*conjg(mat) %%
|
|
C %% %%
|
|
C %% If isrt=0, the matrix mat is assumed to be in the spherical %%
|
|
C %% harmonics basis and no spin is considered. (lm = 2*l+1) %%
|
|
C %% The calculation done is then : T*conjg(mat) %%
|
|
C %% %%
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
C Definiton of the variables :
|
|
C ----------------------------
|
|
USE common_data
|
|
USE reps
|
|
IMPLICIT NONE
|
|
INTEGER :: lm,l,isrt
|
|
COMPLEX(KIND=8), DIMENSION(1:lm,1:lm) :: mat
|
|
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: tinv
|
|
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: tmp_tinv
|
|
COMPLEX(KIND=8), DIMENSION(-l:l,-l:l) :: tmat
|
|
INTEGER :: m,n
|
|
C
|
|
C Definition of the complex conjugation operator in the spherical harmonic basis :
|
|
C --------------------------------------------------------------------------------
|
|
C
|
|
tmat = CMPLX(0.d0,0.d0)
|
|
DO m=-l,l
|
|
tmat(m,-m)=(-1)**m
|
|
END DO
|
|
C
|
|
C
|
|
C Calculation of the Time-reversal operator in the desired representation basis :
|
|
C -------------------------------------------------------------------------------
|
|
C
|
|
IF (isrt==0) THEN
|
|
C The case isrt=0 is a "default case" :
|
|
C mat is in the spherical harmonic basis (without spinor representation)
|
|
ALLOCATE(tinv(1:2*l+1,1:2*l+1))
|
|
tinv(1:2*l+1,1:2*l+1)=tmat(-l:l,-l:l)
|
|
ELSE
|
|
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) )
|
|
IF (reptrans(l,isrt)%ifmixing) THEN
|
|
ALLOCATE(tinv(1:2*(2*l+1),1:2*(2*l+1)))
|
|
ALLOCATE(tmp_tinv(1:2*(2*l+1),1:2*(2*l+1)))
|
|
tinv = CMPLX(0.d0,0.d0)
|
|
tmp_tinv = CMPLX(0.d0,0.d0)
|
|
C Definition of the time-reversal operator as a spinor-operator (multiplication by -i.sigma_y)
|
|
tinv(1:2*l+1,2*l+2:2*(2*l+1))=-tmat(-l:l,-l:l)
|
|
tinv(2*l+2:2*(2*l+1),1:2*l+1)=tmat(-l:l,-l:l)
|
|
C The time reversal operator is put in the desired basis.
|
|
tmp_tinv(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
|
|
& reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1)),
|
|
& tinv(1:2*(2*l+1),1:2*(2*l+1)))
|
|
tinv(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
|
|
& tmp_tinv(1:2*(2*l+1),1:2*(2*l+1)),
|
|
& TRANSPOSE(reptrans(l,isrt)%transmat
|
|
& (1:2*(2*l+1),1:2*(2*l+1)) ) )
|
|
C the result tinv = (reptrans)*tinv*transpose(reptrans)
|
|
C or tinv_{new_i} = <new_i|lm> tinv_{lm} (<lm|new_i>)*
|
|
C which is exactly the expression of the spinor operator in the new basis.
|
|
DEALLOCATE(tmp_tinv)
|
|
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only)
|
|
ELSE
|
|
ALLOCATE(tinv(1:2*l+1,1:2*l+1))
|
|
ALLOCATE(tmp_tinv(-l:l,-l:l))
|
|
tinv = CMPLX(0.d0,0.d0)
|
|
tmp_tinv = CMPLX(0.d0,0.d0)
|
|
C The time reversal operator is put in the desired basis.
|
|
tmp_tinv(-l:l,-l:l)=MATMUL(
|
|
& reptrans(l,isrt)%transmat(-l:l,-l:l),
|
|
& tmat(-l:l,-l:l) )
|
|
tinv(1:2*l+1,1:2*l+1)=MATMUL(
|
|
& tmp_tinv(-l:l,-l:l),TRANSPOSE(
|
|
& reptrans(l,isrt)%transmat(-l:l,-l:l)) )
|
|
DEALLOCATE(tmp_tinv)
|
|
END IF
|
|
C the result tinv = (reptrans)*tinv*transpose(reptrans)
|
|
C or tinv_{new_i} = <new_i|lm> tinv_{lm} (<lm|new_i>)*
|
|
C which is exactly the expression of the operator in the new basis.
|
|
END IF
|
|
C
|
|
C
|
|
C Multiplication of the matrix mat by the time reversal operator :
|
|
C ----------------------------------------------------------------
|
|
C
|
|
mat(1:lm,1:lm) = MATMUL(
|
|
& tinv(1:lm,1:lm),CONJG(mat(1:lm,1:lm)) )
|
|
DEALLOCATE(tinv)
|
|
C The multiplication is the product of tinv and (mat)*
|
|
C
|
|
RETURN
|
|
END
|
|
|
|
|
|
|
|
SUBROUTINE add_timeinv(Dmat,orbit,norbit)
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
C %% %%
|
|
C %% This subroutine calculates for each density matrix in Dmat %%
|
|
C %% its image by the time-reversal operator and adds it to the %%
|
|
C %% former one to get a time-symmetrized result. %%
|
|
C %% %%
|
|
C %% This operation is done only if the computation is paramagnetic %%
|
|
C %% %%
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
C Definiton of the variables :
|
|
C ----------------------------
|
|
USE common_data
|
|
USE projections
|
|
USE symm
|
|
USE reps
|
|
IMPLICIT NONE
|
|
INTEGER :: norbit
|
|
TYPE(matrix), DIMENSION(nsp,norbit) :: Dmat
|
|
COMPLEX(KIND=8),DIMENSION(:,:,:), ALLOCATABLE :: rot_dmat
|
|
COMPLEX(KIND=8),DIMENSION(:,:), ALLOCATABLE :: time_op
|
|
COMPLEX(KIND=8),DIMENSION(:,:,:), ALLOCATABLE :: tmp_mat
|
|
COMPLEX(KIND=8):: ephase
|
|
TYPE(orbital), DIMENSION(norbit) :: orbit
|
|
INTEGER :: isym, iorb, iatom, jorb, is, is1, l, i
|
|
INTEGER :: isrt, jatom, imult, m
|
|
C
|
|
C
|
|
DO iorb=1,norbit
|
|
l=orbit(iorb)%l
|
|
isrt=orbit(iorb)%sort
|
|
iatom=orbit(iorb)%atom
|
|
C -----------------------------------------------------------------------------------
|
|
C The s-orbitals are a particular case of a "non-mixing" basis and are treated here :
|
|
C -----------------------------------------------------------------------------------
|
|
IF(l==0) THEN
|
|
IF (nsp==1) THEN
|
|
Dmat(1,iorb)%mat(1,1) =
|
|
& ( Dmat(1,iorb)%mat(1,1)+
|
|
& CONJG(Dmat(1,iorb)%mat(1,1)) )/2.d0
|
|
ELSE
|
|
ALLOCATE(tmp_mat(1,1,nsp))
|
|
tmp_mat=0.d0
|
|
C Application of the time-reversal operation
|
|
C ------------------------------------------
|
|
DO is=1,nsp
|
|
is1=is+(-1)**(is+1)
|
|
C the time reversal operation transforms up/up -1- in dn/dn -2- and up/dn -3- in dn/up -4- (and vice versa)
|
|
tmp_mat(1,1,is)=CONJG(Dmat(is1,iorb)%mat(1,1) )
|
|
IF (is.gt.2) tmp_mat(1,1,is)=-tmp_mat(1,1,is)
|
|
C Off diagonal blocks are multiplied by (-1).
|
|
ENDDO
|
|
C Symmetrization of Dmat :
|
|
C ------------------------
|
|
DO is=1,nsp
|
|
Dmat(is,iorb)%mat(1,1) = (Dmat(is,iorb)%mat(1,1)+
|
|
& tmp_mat(1,1,is) )/2.d0
|
|
ENDDO
|
|
DEALLOCATE(tmp_mat)
|
|
ENDIF
|
|
C -----------------------------------------------------------------------------------------------------
|
|
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) ) :
|
|
C -----------------------------------------------------------------------------------------------------
|
|
ELSEIF (reptrans(l,isrt)%ifmixing) THEN
|
|
C Calculation of the time-reversal operator :
|
|
C -------------------------------------------
|
|
ALLOCATE(time_op(1:2*(2*l+1),1:2*(2*l+1)))
|
|
time_op(:,:)=0.d0
|
|
DO m=1,2*(2*l+1)
|
|
time_op(m,m)=1.d0
|
|
ENDDO
|
|
C time_op is Identity.
|
|
CALL timeinv_op(time_op,2*(2*l+1),l,isrt)
|
|
C time_op is now the time-reversal operator in the desired basis ({new_i})
|
|
C
|
|
C Application of the time-reversal operation
|
|
C ------------------------------------------
|
|
ALLOCATE(tmp_mat(1:2*(2*l+1),1:2*(2*l+1),1))
|
|
tmp_mat(1:2*(2*l+1),1:2*(2*l+1),1)=
|
|
= MATMUL(Dmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1)),
|
|
& TRANSPOSE(time_op(1:2*(2*l+1),1:2*(2*l+1)) ) )
|
|
tmp_mat(1:2*(2*l+1),1:2*(2*l+1),1)=
|
|
= MATMUL(time_op(1:2*(2*l+1),1:2*(2*l+1)),
|
|
& CONJG(tmp_mat(1:2*(2*l+1),1:2*(2*l+1),1) ) )
|
|
C The operation performed is : time_op.conjugate(Dmat).transpose(conjugate(time_op))
|
|
C or in other words, D(T)_{new_i} . Dmat* . D(inverse(T))*_{new_i}
|
|
C
|
|
C Symmetrization of Dmat :
|
|
C ------------------------
|
|
Dmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1)) =
|
|
& ( Dmat(1,iorb)%mat(1:2*(2*l+1),1:2*(2*l+1)) +
|
|
& tmp_mat(1:2*(2*l+1),1:2*(2*l+1),1) )/2.d0
|
|
DEALLOCATE(tmp_mat)
|
|
DEALLOCATE(time_op)
|
|
C ----------------------------------------------------------------------------------------------
|
|
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only) :
|
|
C ----------------------------------------------------------------------------------------------
|
|
ELSE
|
|
C Calculation of the time-reversal operator :
|
|
C -------------------------------------------
|
|
ALLOCATE(time_op(-l:l,-l:l))
|
|
time_op(:,:)=0.d0
|
|
DO m=-l,l
|
|
time_op(m,m)=1.d0
|
|
ENDDO
|
|
C time_op is Identity.
|
|
CALL timeinv_op(time_op,(2*l+1),l,isrt)
|
|
C time_op is now the time-reversal operator in the desired basis ({new_i})
|
|
C
|
|
IF (nsp==1) THEN
|
|
C Application of the time-reversal operation and symmetrization :
|
|
C ---------------------------------------------------------------
|
|
ALLOCATE(tmp_mat(-l:l,-l:l,1))
|
|
tmp_mat(-l:l,-l:l,1)=
|
|
= MATMUL( Dmat(1,iorb)%mat(-l:l,-l:l),
|
|
& TRANSPOSE(time_op(-l:l,-l:l) ) )
|
|
tmp_mat(-l:l,-l:l,1)=
|
|
= MATMUL(time_op(-l:l,-l:l),
|
|
& CONJG(tmp_mat(-l:l,-l:l,1)) )
|
|
C The operation performed is : time_op.conjugate(Dmat).transpose(conjugate(time_op))
|
|
C or in other words, D(T)_{new_i} . Dmat* . D(inverse(T))*_{new_i}
|
|
Dmat(1,iorb)%mat(-l:l,-l:l) =
|
|
& ( Dmat(1,iorb)%mat(-l:l,-l:l) +
|
|
& tmp_mat(-l:l,-l:l,1) )/2.d0
|
|
DEALLOCATE(tmp_mat)
|
|
ELSE
|
|
C Application of the time-reversal operation
|
|
C ------------------------------------------
|
|
ALLOCATE(tmp_mat(-l:l,-l:l,nsp))
|
|
DO is=1,nsp
|
|
is1=is+(-1)**(is+1)
|
|
C the time reversal operation transforms up/up -1- in dn/dn -2- and up/dn -3- in dn/up -4 (and vice versa)
|
|
tmp_mat(-l:l,-l:l,is)=
|
|
= MATMUL( Dmat(is1,iorb)%mat(-l:l,-l:l),
|
|
& TRANSPOSE( time_op(-l:l,-l:l) ) )
|
|
tmp_mat(-l:l,-l:l,is)=
|
|
= MATMUL( time_op(-l:l,-l:l),
|
|
& CONJG( tmp_mat(-l:l,-l:l,is) ) )
|
|
C The operation performed is : time_op.conjugate(Dmat).transpose(conjugate(time_op))
|
|
C or in other words, D(T)_{new_i} . Dmat* . D(inverse(T))*_{new_i}
|
|
IF (is.gt.2) THEN
|
|
tmp_mat(-l:l,-l:l,is)=-tmp_mat(-l:l,-l:l,is)
|
|
ENDIF
|
|
C Off diagonal terms are multiplied by (-1).
|
|
ENDDO
|
|
C Symmetrization of Dmat :
|
|
C ------------------------
|
|
DO is=1,nsp
|
|
Dmat(is,iorb)%mat(-l:l,-l:l) =
|
|
& (Dmat(is,iorb)%mat(-l:l,-l:l)+
|
|
& tmp_mat(-l:l,-l:l,is) )/2.d0
|
|
ENDDO
|
|
DEALLOCATE(tmp_mat)
|
|
ENDIF
|
|
DEALLOCATE(time_op)
|
|
C
|
|
ENDIF ! End of the type basis if-then-else
|
|
ENDDO ! End of the iorb loop
|
|
C
|
|
RETURN
|
|
END
|
|
|
|
|
|
|
|
|