mirror of
https://github.com/triqs/dft_tools
synced 2025-01-12 22:18:23 +01:00
0a1285405c
- Add Fourier for lattice. - Add regular_bz_mesh, cyclic_lattice, and their FFT. - rm freq_infty. - The gf can now be evaluated on a tail_view, which result in composing the tail. - Fix the following issue : g(om_) << g(om_ +1) will recompose the tail correctly. - TODO : TEST THIS NEW FEATURE IN DETAIL. - Work on singularity for G(x, omega) - Separate the factory for singularity from the data factory in gf. - overload assign_from_functoin (renamed). - Fix singularity_t and co in the gf (const issue). - Clean tail, add tail_const_view - add m_tail for x -> tail on any mesh - test curry + fourier works on k
136 lines
5.0 KiB
C++
136 lines
5.0 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2014 by O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#pragma once
|
|
#include <triqs/arrays.hpp>
|
|
#include <triqs/utility/index_generator.hpp>
|
|
//#include <string>
|
|
//#include <vector>
|
|
|
|
namespace triqs {
|
|
namespace lattice {
|
|
|
|
class cyclic_lattice_mesh {
|
|
|
|
utility::mini_vector<int, 3> dims; // the size in each dimension
|
|
size_t _size = dims[0] * dims[1] * dims[2]; // total size
|
|
long s1 = dims[0]; // stride
|
|
long s2 = dims[0] * dims[1]; // stride
|
|
|
|
long _modulo(long r, int i) const {
|
|
long res = r % dims[i];
|
|
return (res >= 0 ? res : res + dims[i]);
|
|
}
|
|
|
|
public:
|
|
cyclic_lattice_mesh(int L1 = 1, int L2 = 1, int L3 = 1) : dims{L1, L2, L3} {}
|
|
|
|
int rank() const { return (dims[2] > 1 ? 3 : (dims[1] > 1 ? 2 : 1)); }
|
|
|
|
utility::mini_vector<int, 3> get_dimensions() const { return dims; }
|
|
|
|
/// ---------- Model the domain concept ---------------------
|
|
using point_t = arrays::vector<int>; // domain concept. PUT on STACK
|
|
|
|
/// ----------- Model the mesh concept ----------------------
|
|
using domain_t = cyclic_lattice_mesh;
|
|
domain_t const& domain() const { return *this; }
|
|
|
|
using index_t = utility::mini_vector<long, 3>;
|
|
using linear_index_t = long;
|
|
|
|
size_t size() const { return _size; }
|
|
|
|
utility::mini_vector<size_t, 1> size_of_components() const {
|
|
return {size()};
|
|
}
|
|
|
|
point_t index_to_point(index_t const& i) const {
|
|
return {i[0], i[1], i[2]}; // not very good.
|
|
}
|
|
|
|
/// flatten the index
|
|
linear_index_t index_to_linear(index_t const& i) const {
|
|
return _modulo(i[0], 0) + _modulo(i[1], 1) * s1 + _modulo(i[2], 2) * s2;
|
|
}
|
|
// linear_index_t index_to_linear(index_t const& i) const { return i[0] + i[1] * s1 + i[2] * s2; }
|
|
|
|
/// The wrapper for the mesh point
|
|
class mesh_point_t : public utility::index3_generator, public utility::arithmetic_ops_by_cast<mesh_point_t, point_t> {
|
|
cyclic_lattice_mesh const* m = nullptr;
|
|
|
|
public:
|
|
mesh_point_t() = default;
|
|
// explicit is important for g[ {1,2}] to disambiguate the mesh_point_t and the mesh_index_t
|
|
explicit mesh_point_t(cyclic_lattice_mesh const& mesh, index_t const& index)
|
|
: index3_generator(mesh.get_dimensions(), index), m(&mesh) {}
|
|
mesh_point_t(cyclic_lattice_mesh const& mesh) : mesh_point_t(mesh, {0, 0, 0}) {}
|
|
operator point_t() const { return m->index_to_point(index()); }
|
|
// linear_index_t linear_index() const { return m->index_to_linear(index()); }
|
|
// The mesh point behaves like a vector
|
|
long operator()(int i) const { return index()[i]; }
|
|
long operator[](int i) const { return operator()(i); }
|
|
friend std::ostream& operator<<(std::ostream& out, mesh_point_t const& x) { return out << x.index(); }
|
|
};
|
|
|
|
/// Accessing a point of the mesh
|
|
mesh_point_t operator[](index_t i) const {
|
|
return mesh_point_t{*this, i};
|
|
}
|
|
|
|
/// Iterating on all the points...
|
|
using const_iterator = gfs::mesh_pt_generator<cyclic_lattice_mesh>;
|
|
const_iterator begin() const { return const_iterator(this); }
|
|
const_iterator end() const { return const_iterator(this, true); }
|
|
const_iterator cbegin() const { return const_iterator(this); }
|
|
const_iterator cend() const { return const_iterator(this, true); }
|
|
|
|
/// ----------- End mesh concept ----------------------
|
|
|
|
/// Reduce point modulo to the lattice.
|
|
mesh_point_t modulo_reduce(index_t const& r) const {
|
|
return mesh_point_t{*this, {_modulo(r[0], 0), _modulo(r[1], 1), _modulo(r[2], 2)}};
|
|
}
|
|
|
|
/// Write into HDF5
|
|
friend void h5_write(h5::group fg, std::string subgroup_name, cyclic_lattice_mesh const& m) {
|
|
h5::group gr = fg.create_group(subgroup_name);
|
|
h5_write(gr, "dims", m.dims.to_vector());
|
|
}
|
|
|
|
/// Read from HDF5
|
|
friend void h5_read(h5::group fg, std::string subgroup_name, cyclic_lattice_mesh& m) {
|
|
h5::group gr = fg.open_group(subgroup_name);
|
|
auto dims = h5::h5_read<std::vector<int>>(gr, "dims");
|
|
m = cyclic_lattice_mesh(dims[0], dims[1], dims[2]);
|
|
}
|
|
|
|
// BOOST Serialization
|
|
friend class boost::serialization::access;
|
|
template <class Archive> void serialize(Archive& ar, const unsigned int version) {
|
|
ar& TRIQS_MAKE_NVP("dims", dims);
|
|
ar& TRIQS_MAKE_NVP("_size", _size);
|
|
ar& TRIQS_MAKE_NVP("s2", s2);
|
|
ar& TRIQS_MAKE_NVP("s1", s1);
|
|
}
|
|
};
|
|
}
|
|
}
|