3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-12 22:18:23 +01:00
dft_tools/triqs/lattice/cyclic_lattice.hpp
Olivier Parcollet 0a1285405c [gfs] Lattice fourier, multivar G, curry, tail
- Add Fourier for lattice.
  - Add regular_bz_mesh, cyclic_lattice, and their FFT.

- rm freq_infty.
- The gf can now be evaluated on a tail_view, which result in composing the tail.
- Fix the following issue :
  g(om_) << g(om_ +1)
  will recompose the tail correctly.
- TODO : TEST THIS NEW FEATURE IN DETAIL.

- Work on singularity for G(x, omega)

 - Separate the factory for singularity from the data factory in gf.
 - overload assign_from_functoin (renamed).
 - Fix singularity_t and co in the gf (const issue).

- Clean tail, add tail_const_view
 - add m_tail for x -> tail on any mesh
 - test curry + fourier works on k
2014-10-18 21:20:35 +02:00

136 lines
5.0 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2014 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#pragma once
#include <triqs/arrays.hpp>
#include <triqs/utility/index_generator.hpp>
//#include <string>
//#include <vector>
namespace triqs {
namespace lattice {
class cyclic_lattice_mesh {
utility::mini_vector<int, 3> dims; // the size in each dimension
size_t _size = dims[0] * dims[1] * dims[2]; // total size
long s1 = dims[0]; // stride
long s2 = dims[0] * dims[1]; // stride
long _modulo(long r, int i) const {
long res = r % dims[i];
return (res >= 0 ? res : res + dims[i]);
}
public:
cyclic_lattice_mesh(int L1 = 1, int L2 = 1, int L3 = 1) : dims{L1, L2, L3} {}
int rank() const { return (dims[2] > 1 ? 3 : (dims[1] > 1 ? 2 : 1)); }
utility::mini_vector<int, 3> get_dimensions() const { return dims; }
/// ---------- Model the domain concept ---------------------
using point_t = arrays::vector<int>; // domain concept. PUT on STACK
/// ----------- Model the mesh concept ----------------------
using domain_t = cyclic_lattice_mesh;
domain_t const& domain() const { return *this; }
using index_t = utility::mini_vector<long, 3>;
using linear_index_t = long;
size_t size() const { return _size; }
utility::mini_vector<size_t, 1> size_of_components() const {
return {size()};
}
point_t index_to_point(index_t const& i) const {
return {i[0], i[1], i[2]}; // not very good.
}
/// flatten the index
linear_index_t index_to_linear(index_t const& i) const {
return _modulo(i[0], 0) + _modulo(i[1], 1) * s1 + _modulo(i[2], 2) * s2;
}
// linear_index_t index_to_linear(index_t const& i) const { return i[0] + i[1] * s1 + i[2] * s2; }
/// The wrapper for the mesh point
class mesh_point_t : public utility::index3_generator, public utility::arithmetic_ops_by_cast<mesh_point_t, point_t> {
cyclic_lattice_mesh const* m = nullptr;
public:
mesh_point_t() = default;
// explicit is important for g[ {1,2}] to disambiguate the mesh_point_t and the mesh_index_t
explicit mesh_point_t(cyclic_lattice_mesh const& mesh, index_t const& index)
: index3_generator(mesh.get_dimensions(), index), m(&mesh) {}
mesh_point_t(cyclic_lattice_mesh const& mesh) : mesh_point_t(mesh, {0, 0, 0}) {}
operator point_t() const { return m->index_to_point(index()); }
// linear_index_t linear_index() const { return m->index_to_linear(index()); }
// The mesh point behaves like a vector
long operator()(int i) const { return index()[i]; }
long operator[](int i) const { return operator()(i); }
friend std::ostream& operator<<(std::ostream& out, mesh_point_t const& x) { return out << x.index(); }
};
/// Accessing a point of the mesh
mesh_point_t operator[](index_t i) const {
return mesh_point_t{*this, i};
}
/// Iterating on all the points...
using const_iterator = gfs::mesh_pt_generator<cyclic_lattice_mesh>;
const_iterator begin() const { return const_iterator(this); }
const_iterator end() const { return const_iterator(this, true); }
const_iterator cbegin() const { return const_iterator(this); }
const_iterator cend() const { return const_iterator(this, true); }
/// ----------- End mesh concept ----------------------
/// Reduce point modulo to the lattice.
mesh_point_t modulo_reduce(index_t const& r) const {
return mesh_point_t{*this, {_modulo(r[0], 0), _modulo(r[1], 1), _modulo(r[2], 2)}};
}
/// Write into HDF5
friend void h5_write(h5::group fg, std::string subgroup_name, cyclic_lattice_mesh const& m) {
h5::group gr = fg.create_group(subgroup_name);
h5_write(gr, "dims", m.dims.to_vector());
}
/// Read from HDF5
friend void h5_read(h5::group fg, std::string subgroup_name, cyclic_lattice_mesh& m) {
h5::group gr = fg.open_group(subgroup_name);
auto dims = h5::h5_read<std::vector<int>>(gr, "dims");
m = cyclic_lattice_mesh(dims[0], dims[1], dims[2]);
}
// BOOST Serialization
friend class boost::serialization::access;
template <class Archive> void serialize(Archive& ar, const unsigned int version) {
ar& TRIQS_MAKE_NVP("dims", dims);
ar& TRIQS_MAKE_NVP("_size", _size);
ar& TRIQS_MAKE_NVP("s2", s2);
ar& TRIQS_MAKE_NVP("s1", s1);
}
};
}
}