mirror of
https://github.com/triqs/dft_tools
synced 2025-01-12 14:08:24 +01:00
0a1285405c
- Add Fourier for lattice. - Add regular_bz_mesh, cyclic_lattice, and their FFT. - rm freq_infty. - The gf can now be evaluated on a tail_view, which result in composing the tail. - Fix the following issue : g(om_) << g(om_ +1) will recompose the tail correctly. - TODO : TEST THIS NEW FEATURE IN DETAIL. - Work on singularity for G(x, omega) - Separate the factory for singularity from the data factory in gf. - overload assign_from_functoin (renamed). - Fix singularity_t and co in the gf (const issue). - Clean tail, add tail_const_view - add m_tail for x -> tail on any mesh - test curry + fourier works on k
176 lines
6.9 KiB
C++
176 lines
6.9 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2012-2013 by O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#pragma once
|
|
#include "./tools.hpp"
|
|
#include "./gf.hpp"
|
|
#include "./local/tail.hpp"
|
|
#include "./local/no_tail.hpp"
|
|
#include "./meshes/matsubara_freq.hpp"
|
|
#include "./evaluators.hpp"
|
|
namespace triqs {
|
|
namespace gfs {
|
|
|
|
struct imfreq {};
|
|
|
|
template <typename Opt> struct gf_mesh<imfreq, Opt> : matsubara_freq_mesh {
|
|
template <typename... T> gf_mesh(T &&... x) : matsubara_freq_mesh(std::forward<T>(x)...) {}
|
|
// using matsubara_freq_mesh::matsubara_freq_mesh;
|
|
};
|
|
|
|
// singularity
|
|
template <> struct gf_default_singularity<imfreq, matrix_valued> {
|
|
using type = tail;
|
|
};
|
|
template <> struct gf_default_singularity<imfreq, scalar_valued> {
|
|
using type = tail;
|
|
};
|
|
|
|
namespace gfs_implementation {
|
|
|
|
/// --------------------------- hdf5 ---------------------------------
|
|
|
|
template <typename S, typename Opt> struct h5_name<imfreq, matrix_valued, S, Opt> {
|
|
static std::string invoke() { return "ImFreq"; }
|
|
};
|
|
|
|
/// --------------------------- data access ---------------------------------
|
|
|
|
template <typename Opt> struct data_proxy<imfreq, matrix_valued, Opt> : data_proxy_array<std::complex<double>, 3> {};
|
|
template <typename Opt> struct data_proxy<imfreq, scalar_valued, Opt> : data_proxy_array<std::complex<double>, 1> {};
|
|
|
|
/// --------------------------- evaluator ---------------------------------
|
|
|
|
// simple evaluation : take the point on the grid...
|
|
template <> struct evaluator_fnt_on_mesh<imfreq> {
|
|
long n;
|
|
double w;
|
|
evaluator_fnt_on_mesh() = default;
|
|
template <typename MeshType> evaluator_fnt_on_mesh(MeshType const &m, long p) { n = p; w=1; }
|
|
template <typename MeshType> evaluator_fnt_on_mesh(MeshType const &m, matsubara_freq const &p) {
|
|
if ((p.n >= m.first_index()) && (p.n < m.size()+m.first_index())) {w=1; n =p.n;}
|
|
else {w=0; n=0;}
|
|
}
|
|
template <typename F> AUTO_DECL operator()(F const &f) const RETURN(w*f(n));
|
|
};
|
|
|
|
// ------------- evaluator -------------------
|
|
// handle the case where the matsu. freq is out of grid...
|
|
|
|
struct _eval_imfreq_base_impl {
|
|
static constexpr int arity = 1;
|
|
template <typename G> int sh(G const * g) const { return (g->mesh().domain().statistic == Fermion ? 1 : 0);}
|
|
|
|
// int -> replace by matsubara_freq
|
|
template <typename G>
|
|
AUTO_DECL operator()(G const *g, int n) const
|
|
RETURN((*g)(matsubara_freq(n, g->mesh().domain().beta, g->mesh().domain().statistic)));
|
|
|
|
template <typename G> typename G::singularity_t operator()(G const *g, tail_view t) const {
|
|
return compose(g->singularity(),t);
|
|
//return g->singularity();
|
|
}
|
|
};
|
|
// --- various 4 specializations
|
|
|
|
// scalar_valued, tail
|
|
template <typename Opt> struct evaluator<imfreq, scalar_valued, tail, Opt> : _eval_imfreq_base_impl {
|
|
|
|
using _eval_imfreq_base_impl::operator();
|
|
|
|
template <typename G> std::complex<double> operator()(G const *g, matsubara_freq const &f) const {
|
|
if (g->mesh().positive_only()) { // only positive Matsubara frequencies
|
|
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n];
|
|
if ((f.n < 0) && ((-f.n - this->sh(g)) < g->mesh().size())) return conj((*g)[-f.n - this->sh(g)]);
|
|
} else {
|
|
if ((f.n >= g->mesh().first_index()) && (f.n < g->mesh().size() + g->mesh().first_index())) return (*g)[f.n];
|
|
}
|
|
return evaluate(g->singularity(),f)(0, 0);
|
|
}
|
|
};
|
|
|
|
// scalar_valued, no tail
|
|
template <typename Opt> struct evaluator<imfreq, scalar_valued, nothing, Opt> : _eval_imfreq_base_impl {
|
|
|
|
using _eval_imfreq_base_impl::operator();
|
|
|
|
template <typename G> std::complex<double> operator()(G const *g, matsubara_freq const &f) const {
|
|
if (g->mesh().positive_only()) { // only positive Matsubara frequencies
|
|
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n];
|
|
if ((f.n < 0) && ((-f.n - this->sh(g)) < g->mesh().size())) return conj((*g)[-f.n - this->sh(g)]);
|
|
} else {
|
|
if ((f.n >= g->mesh().first_index()) && (f.n < g->mesh().size() + g->mesh().first_index())) return (*g)[f.n];
|
|
}
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
// matrix_valued, tail
|
|
template <typename Opt> struct evaluator<imfreq, matrix_valued, tail, Opt> : _eval_imfreq_base_impl {
|
|
|
|
using _eval_imfreq_base_impl::operator();
|
|
|
|
template <typename G> arrays::matrix_const_view<std::complex<double>> operator()(G const *g, matsubara_freq const &f) const {
|
|
if (g->mesh().positive_only()) { // only positive Matsubara frequencies
|
|
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n]();
|
|
if ((f.n < 0) && ((-f.n - this->sh(g)) < g->mesh().size()))
|
|
return arrays::matrix<std::complex<double>>{conj((*g)[-f.n - this->sh(g)]())};
|
|
} else {
|
|
if ((f.n >= g->mesh().first_index()) && (f.n < g->mesh().size() + g->mesh().first_index())) return (*g)[f.n];
|
|
}
|
|
return evaluate(g->singularity(), f);
|
|
}
|
|
};
|
|
|
|
// matrix_valued, no tail
|
|
template <typename Opt> struct evaluator<imfreq, matrix_valued, nothing, Opt> : _eval_imfreq_base_impl {
|
|
|
|
using _eval_imfreq_base_impl::operator();
|
|
|
|
template <typename G> arrays::matrix_const_view<std::complex<double>> operator()(G const *g, matsubara_freq const &f) const {
|
|
if (g->mesh().positive_only()) { // only positive Matsubara frequencies
|
|
if ((f.n >= 0) && (f.n < g->mesh().size())) return (*g)[f.n]();
|
|
if ((f.n < 0) && ((-f.n - this->sh(g)) < g->mesh().size()))
|
|
return arrays::matrix<std::complex<double>>{conj((*g)[-f.n - this->sh(g)]())};
|
|
} else {
|
|
if ((f.n >= g->mesh().first_index()) && (f.n < g->mesh().size() + g->mesh().first_index())) return (*g)[f.n];
|
|
}
|
|
auto r = arrays::matrix<std::complex<double>>{get_target_shape(*g)};
|
|
r() = 0;
|
|
return r;
|
|
}
|
|
};
|
|
|
|
} // gfs_implementation
|
|
|
|
// specific operations (for legacy python code).
|
|
// +=, -= with a matrix
|
|
inline void operator+=(gf_view<imfreq> g, arrays::matrix<std::complex<double>> m) {
|
|
for (int u = 0; u < first_dim(g.data()); ++u) g.data()(u, arrays::ellipsis()) += m;
|
|
g.singularity()(0) += m;
|
|
}
|
|
|
|
inline void operator-=(gf_view<imfreq> g, arrays::matrix<std::complex<double>> m) {
|
|
for (int u = 0; u < first_dim(g.data()); ++u) g.data()(u, arrays::ellipsis()) -= m;
|
|
g.singularity()(0) -= m;
|
|
}
|
|
}
|
|
}
|