3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-12 14:08:24 +01:00
dft_tools/triqs/gfs/curry.hpp
Olivier Parcollet 0a1285405c [gfs] Lattice fourier, multivar G, curry, tail
- Add Fourier for lattice.
  - Add regular_bz_mesh, cyclic_lattice, and their FFT.

- rm freq_infty.
- The gf can now be evaluated on a tail_view, which result in composing the tail.
- Fix the following issue :
  g(om_) << g(om_ +1)
  will recompose the tail correctly.
- TODO : TEST THIS NEW FEATURE IN DETAIL.

- Work on singularity for G(x, omega)

 - Separate the factory for singularity from the data factory in gf.
 - overload assign_from_functoin (renamed).
 - Fix singularity_t and co in the gf (const issue).

- Clean tail, add tail_const_view
 - add m_tail for x -> tail on any mesh
 - test curry + fourier works on k
2014-10-18 21:20:35 +02:00

130 lines
6.5 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2013 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#pragma once
#include "./product.hpp"
namespace triqs { namespace gfs {
template<typename F> struct lambda_valued {};
template <typename Var, typename M, typename L> gf_view<Var, lambda_valued<L>> make_gf_view_lambda_valued(M m, L l) {
return {std::move(m), l, nothing(), nothing(), {}};
}
namespace gfs_implementation {
/// --------------------------- data access ---------------------------------
template<typename Opt, typename F, typename M> struct data_proxy<M,lambda_valued<F>,Opt> : data_proxy_lambda<F> {};
/// --------------------------- Factories ---------------------------------
template<typename F, typename Opt, typename ... Ms>
struct data_factory<cartesian_product<Ms...>, lambda_valued<F>, nothing, Opt> {};
/// --------------------------- partial_eval ---------------------------------
// partial_eval<0> (g, 1) returns : x -> g(1,x)
// partial_eval<1> (g, 3) returns : x -> g(x,3)
// a technical trait: from a tuple of mesh, return the mesh (either M if it is a tuple of size 1, or the corresponding cartesian_product<M..>).
template<typename ... Ms> struct cart_prod_impl;
template<typename ... Ms> struct cart_prod_impl<std::tuple<Ms...>> { using type = cartesian_product<Ms...>;};
template<typename M> struct cart_prod_impl<std::tuple<M>> { using type = M;};
template<typename ... Ms> using cart_prod = typename cart_prod_impl<Ms...>::type;
// The implementation (can be overloaded for some types), so put in a struct to have partial specialization
template <typename Variable, typename Target, typename Singularity, typename Opt, bool IsConst> struct partial_eval_impl;
// The user function
template <int... pos, typename Variable, typename Target, typename Singularity, typename Opt, bool C, typename... T>
auto partial_eval(gf_view<Variable, Target, Singularity, Opt, C> g, T&&... x) {
return partial_eval_impl<Variable, Target, Singularity, Opt, C>::template invoke<pos...>(g(), std::forward<T>(x)...);
}
template <int... pos, typename Variable, typename Target, typename Singularity, typename Opt, typename... T>
auto partial_eval(gf<Variable, Target, Singularity, Opt>& g, T&&... x) {
return partial_eval_impl<Variable, Target, Singularity, Opt, false>::template invoke<pos...>(g(), std::forward<T>(x)...);
}
template <int... pos, typename Variable, typename Target, typename Singularity, typename Opt, typename... T>
auto partial_eval(gf<Variable, Target, Singularity, Opt> const& g, T&&... x) {
return partial_eval_impl<Variable, Target, Singularity, Opt, true>::template invoke<pos...>(g(), std::forward<T>(x)...);
}
/// --------------------------- curry ---------------------------------
// curry<0>(g) returns : x-> y... -> g(x,y...)
// curry<1>(g) returns : y-> x,z... -> g(x,y,z...)
// The implementation (can be overloaded for some types)
template <int... pos, typename Target, typename Singularity, typename Opt, bool IsConst, typename... Ms>
auto curry_impl(gf_view<cartesian_product<Ms...>, Target, Singularity, Opt, IsConst> g) {
// pick up the meshed corresponding to the curryed variables
auto meshes_tuple = triqs::tuple::filter<pos...>(g.mesh().components());
using var_t = cart_prod<triqs::tuple::filter_t<std::tuple<Ms...>, pos...>>;
auto m = triqs::tuple::apply_construct<gf_mesh<var_t>>(meshes_tuple);
auto l = [g](auto&&... x) { return partial_eval<pos...>(g, x...); };
return make_gf_view_lambda_valued<var_t>(m, l);
};
// The user function
template <int... pos, typename Variable, typename Target, typename Singularity, typename Opt, bool IsConst>
auto curry(gf_view<Variable, Target, Singularity, Opt, IsConst> g) {
return curry_impl<pos...>(g());
}
template <int... pos, typename Variable, typename Target, typename Singularity, typename Opt>
auto curry(gf<Variable, Target, Singularity, Opt>& g) {
return curry_impl<pos...>(g());
}
template <int... pos, typename Variable, typename Target, typename Singularity, typename Opt>
auto curry(gf<Variable, Target, Singularity, Opt> const& g) {
return curry_impl<pos...>(g());
}
//---------------------------------------------
// A generic impl. for cartesian product
template <typename Target, typename Singularity, typename Opt, bool IsConst, typename... Ms>
struct partial_eval_impl<cartesian_product<Ms...>, Target, Singularity, Opt, IsConst> {
template <int... pos, typename... T>
static auto invoke(gf_view<cartesian_product<Ms...>, Target, Singularity, Opt, IsConst> g, T const&... x) {
using var_t = cart_prod<triqs::tuple::filter_out_t<std::tuple<Ms...>, pos...>>;
// meshes of the returned gf_view : just drop the mesh of the evaluated variables
auto meshes_tuple_partial = triqs::tuple::filter_out<pos...>(g.mesh().components());
auto m = triqs::tuple::apply_construct<gf_mesh<var_t>>(meshes_tuple_partial);
// now rebuild a tuple of the size sizeof...(Ms), containing the indices and range at the position of evaluated variables.
auto arr_args = triqs::tuple::inverse_filter<sizeof...(Ms), pos...>(std::make_tuple(x...), arrays::range());
// from it, we make a slice of the array of g, corresponding to the data of the returned gf_view
auto arr2 = triqs::tuple::apply(g.data(), std::tuple_cat(arr_args, std::make_tuple(arrays::ellipsis{})));
auto singv = partial_eval<pos...>(g.singularity(), x...);
using r_sing_t = typename decltype(singv)::regular_type;
// finally, we build the view on this data.
using r_t = gf_view<var_t, Target, r_sing_t, Opt, IsConst>;
return r_t{m, arr2, singv, {}, {}};
}
};
} // gf_implementation
using gfs_implementation::partial_eval;
using gfs_implementation::curry;
}}