3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-12 14:08:24 +01:00
dft_tools/triqs/gfs/bz.hpp
Olivier Parcollet 0a1285405c [gfs] Lattice fourier, multivar G, curry, tail
- Add Fourier for lattice.
  - Add regular_bz_mesh, cyclic_lattice, and their FFT.

- rm freq_infty.
- The gf can now be evaluated on a tail_view, which result in composing the tail.
- Fix the following issue :
  g(om_) << g(om_ +1)
  will recompose the tail correctly.
- TODO : TEST THIS NEW FEATURE IN DETAIL.

- Work on singularity for G(x, omega)

 - Separate the factory for singularity from the data factory in gf.
 - overload assign_from_functoin (renamed).
 - Fix singularity_t and co in the gf (const issue).

- Clean tail, add tail_const_view
 - add m_tail for x -> tail on any mesh
 - test curry + fourier works on k
2014-10-18 21:20:35 +02:00

77 lines
2.8 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2014 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#pragma once
#include "./tools.hpp"
#include "./gf.hpp"
#include "./local/tail.hpp"
#include "./domains/R.hpp"
#include "../lattice/regular_bz_mesh.hpp"
#include "./evaluators.hpp"
namespace triqs {
namespace gfs {
struct bz {};
template <typename Opt> struct gf_mesh<bz, Opt> : lattice::regular_bz_mesh {
template <typename... T> gf_mesh(T &&... x) : lattice::regular_bz_mesh(std::forward<T>(x)...) {}
};
namespace gfs_implementation {
// h5 name
template <typename Singularity, typename Opt> struct h5_name<bz, matrix_valued, Singularity, Opt> {
static std::string invoke() { return "BZ"; }
};
/// --------------------------- data access ---------------------------------
template <typename Opt> struct data_proxy<bz, matrix_valued, Opt> : data_proxy_array<std::complex<double>, 3> {};
template <typename Opt> struct data_proxy<bz, scalar_valued, Opt> : data_proxy_array<std::complex<double>, 1> {};
/// --------------------------- evaluator ---------------------------------
// simple evaluation : take the point on the grid...
template <> struct evaluator_fnt_on_mesh<bz> {
// lattice::regular_bz_mesh::index_t n;
size_t n;
evaluator_fnt_on_mesh() = default;
template <typename MeshType> evaluator_fnt_on_mesh(MeshType const &m, lattice::k_t const &k) {
// n = m.locate_neighbours(k).index();
n = m.locate_neighbours(k).linear_index();
}
template <typename F> AUTO_DECL operator()(F const &f) const RETURN(f(n));
// template <typename F> decltype(auto) operator()(F const &f) const { return f(n); }
};
// --------------------------------------------------------------
template <typename Target, typename Singularity, typename Opt> struct evaluator<bz, Target, Singularity, Opt> {
static constexpr int arity = 1;
template <typename G> auto operator()(G const *g, lattice::k_t const &k) const {
auto n = g->mesh().locate_neighbours(k);
return (*g)[n];
}
};
}
}
}