3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-13 14:29:01 +01:00
dft_tools/triqs/gfs/re_im_time.hpp
Olivier Parcollet b45045e81c gfs: change the name of the mesh -> gf_mesh for gcc
gcc has a pb because the template mesh<Variable,Opt>
has the name same as the gf mesh method (!).
Clang is fine however on this...

Solution : rename the template mesh<...> to gf_mesh...
Not very elegant, but ok.
2013-08-27 14:20:50 +02:00

122 lines
5.2 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_GF_RE_IM_TIMES_H
#define TRIQS_GF_RE_IM_TIMES_H
#include "./tools.hpp"
#include "./gf.hpp"
#include "./retime.hpp"
#include "./imtime.hpp"
#include "./meshes/product.hpp"
namespace triqs { namespace gfs {
struct re_im_time {};
// the gf_mesh
template<typename Opt> struct gf_mesh<re_im_time,Opt> : mesh_product<gf_mesh<retime,Opt>,gf_mesh<imtime,Opt>> {
typedef gf_mesh<retime,Opt> m1_t;
typedef gf_mesh<imtime,Opt> m2_t;
typedef mesh_product<m1_t,m2_t> B;
gf_mesh (double tmin, double tmax, size_t nt, double beta, statistic_enum S, size_t ntau, mesh_kind mk=full_bins) :
B {gf_mesh<retime,Opt>(tmin,tmax,nt), gf_mesh<imtime,Opt>(beta,S, ntau, mk)} {}
};
namespace gfs_implementation {
// singularity
//template<typename Opt> struct singularity<re_im_time, scalar_valued, Opt> { typedef gf<retime,scalar_valued> type;};
// h5 name
template<typename Opt> struct h5_name<re_im_time,scalar_valued,Opt> { static std::string invoke(){ return "GfReImTime";}};
/// --------------------------- data access ---------------------------------
template<typename Opt> struct data_proxy<re_im_time,scalar_valued,Opt> : data_proxy_array<std::complex<double>,1> {};
/// --------------------------- evaluator ---------------------------------
template<typename Opt>
struct evaluator<re_im_time,scalar_valued,Opt> {
static constexpr int arity = 2;
template<typename G>
std::complex<double> operator() (G const * g, double t, double tau) const {
//auto & data = g->data();
//auto & mesh = g->mesh();
double beta = std::get<1>(g->mesh().components()).domain().beta;
int p = std::floor(tau/beta);
tau -= p*beta;
size_t nr,ni; double wr,wi; bool in;
std::tie(in, nr, wr) = windowing( std::get<0>(g->mesh().components()),t);
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
std::tie(in, ni, wi) = windowing( std::get<1>(g->mesh().components()),tau);
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
auto gg = on_mesh(*g); //[g]( size_t nr, size_t ni) {return g->on_mesh(nr,ni);}; //data( g->mesh().index_to_linear(nr,ni));
auto res = wr *( wi*gg(nr,ni) + (1-wi)*gg(nr,ni+1)) + (1-wr) * ( wi*gg(nr+1,ni) + (1-wi)*gg(nr+1,ni+1));
return ((std::get<1>(g->mesh().components()).domain().statistic == Fermion) && (p%2==1) ? -res : res);
}
};
// ------------------------------- Factories --------------------------------------------------
template<typename Opt> struct factories<re_im_time, scalar_valued,Opt> {
typedef gf<re_im_time, scalar_valued,Opt> gf_t;
template<typename MeshType>
static gf_t make_gf(MeshType && m) {
typename gf_t::data_regular_t A(m.size());
A() =0;
return gf_t (m, std::move(A), nothing(), nothing() ) ;
}
static gf_t make_gf(double tmin, double tmax, size_t nt, double beta, statistic_enum S, size_t ntau, mesh_kind mk=full_bins) {
auto m = gf_mesh<re_im_time,Opt>(tmin,tmax, nt, beta, S, ntau, mk);
typename gf_t::data_regular_t A(m.size());
A() =0;
return gf_t (m, std::move(A), nothing(), nothing());
//return gf_t (m, std::move(A), make_gf<retime,scalar_valued>(tmin, tmax, nt), nothing());
}
};
} // gfs_implementation
// CHANGE THIS NAME !!!
template<typename RHS, bool V, typename Variable, typename Target, typename Opt >
void assign_from_expression (gf_impl<Variable,Target,Opt,V> const &, RHS) {}
//slices
inline gf_view<retime,scalar_valued> slice_mesh_imtime (gf_view<re_im_time,scalar_valued> g, size_t index) {
auto arr = reinterpret_linear_array(g.mesh(),g.data()); // view it as a 2d array
return { std::get<0>(g.mesh().components()), arr(arrays::range(), index), local::tail(1,1), nothing() };
}
/* gf_view<imtime,scalar_valued> slice_mesh_retime ( gf_view<re_im_time,scalar_valued> g, size_t index) {
auto arr = reinterpret_linear_array(g.mesh(),g.data()); // view it as a 2d array
return { std::get<1>(g.mesh().components()), arr(index, arrays::range()), g.singularity().singularity(), nothing() };
}
*/
//
// gf_view<retime,scalar_valued> slice_meshes ( gf_view<re_im_time,scalar_valued> g, size_t index) {
// return { std::get<0>(g.mesh().components()), g.data()(arrays::range(), index), tail ( g.singularity(.......) ), g.symmetry()}
// }
}}
#endif