3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-27 06:43:40 +01:00
dft_tools/triqs/gfs/meshes/linear.hpp
Olivier Parcollet 5f7e0989a3 gfs. Rm code introduced only for Krylov QMC
- This function was redondant : qmc code cleaned.
- using make_clone in gfs namespace for ADL usage.
2013-12-23 23:21:30 +01:00

217 lines
6.7 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_GF_MESH_LINEAR_H
#define TRIQS_GF_MESH_LINEAR_H
#include "./mesh_tools.hpp"
namespace triqs {
namespace gfs {
// Three possible meshes
enum mesh_kind {
half_bins,
full_bins,
without_last
};
template <typename Domain> struct linear_mesh {
typedef Domain domain_t;
typedef size_t index_t;
typedef typename domain_t::point_t domain_pt_t;
linear_mesh() : _dom(), L(0), a_pt(0), b_pt(0), xmin(0), xmax(0), del(0), meshk(half_bins) {}
explicit linear_mesh(domain_t dom, double a, double b, size_t n_pts, mesh_kind mk)
: _dom(std::move(dom)), L(n_pts), a_pt(a), b_pt(b), meshk(mk) {
switch (mk) {
case half_bins:
del = (b - a) / L;
xmin = a + 0.5 * del;
break;
case full_bins:
del = (b - a) / (L - 1);
xmin = a;
break;
case without_last:
del = (b - a) / L;
xmin = a;
break;
}
xmax = xmin + del * (L - 1);
}
domain_t const &domain() const { return _dom; }
size_t size() const { return L; }
double delta() const { return del; }
double x_max() const { return xmax; }
double x_min() const { return xmin; }
mesh_kind kind() const { return meshk; }
/// Conversions point <-> index <-> linear_index
domain_pt_t index_to_point(index_t ind) const {
return embed(xmin + ind * del, std::integral_constant<bool, std::is_base_of<std::complex<double>, domain_pt_t>::value>());
}
private: // multiply by I is the type is a complex ....
domain_pt_t embed(double x, std::false_type) const { return x; }
domain_pt_t embed(double x, std::true_type) const { return std::complex<double>(0, x); }
public:
size_t index_to_linear(index_t ind) const { return ind; }
/// The wrapper for the mesh point
class mesh_point_t : tag::mesh_point, public utility::arithmetic_ops_by_cast<mesh_point_t, domain_pt_t> {
linear_mesh const *m;
index_t _index;
public:
mesh_point_t() : m(nullptr) {}
mesh_point_t(linear_mesh const &mesh, index_t const &index_) : m(&mesh), _index(index_) {}
void advance() { ++_index; }
typedef domain_pt_t cast_t;
operator cast_t() const { return m->index_to_point(_index); }
size_t linear_index() const { return _index; }
size_t index() const { return _index; }
bool at_end() const { return (_index == m->size()); }
void reset() { _index = 0; }
};
/// Accessing a point of the mesh
mesh_point_t operator[](index_t i) const { return mesh_point_t(*this, i); }
private:
static double real_or_imag(domain_pt_t x, std::false_type) { return x; }
static double real_or_imag(domain_pt_t x, std::true_type) { return imag(x); }
public:
/// Iterating on all the points...
typedef mesh_pt_generator<linear_mesh> const_iterator;
const_iterator begin() const { return const_iterator(this); }
const_iterator end() const { return const_iterator(this, true); }
const_iterator cbegin() const { return const_iterator(this); }
const_iterator cend() const { return const_iterator(this, true); }
/// Mesh comparison
bool operator==(linear_mesh const &M) const {
return ((_dom == M._dom) && (size() == M.size()) && (std::abs(xmin - M.xmin) < 1.e-15) && (std::abs(xmax - M.xmax) < 1.e-15));
}
bool operator!=(linear_mesh const &M) const { return !(operator==(M)); }
/// Write into HDF5
friend void h5_write(h5::group fg, std::string subgroup_name, linear_mesh const &m) {
h5::group gr = fg.create_group(subgroup_name);
int k;
switch (m.meshk) {
case half_bins:
k = 0;
break;
case full_bins:
k = 1;
break;
case without_last:
k = 2;
break;
}
h5_write(gr, "domain", m.domain());
h5_write(gr, "min", m.a_pt);
h5_write(gr, "max", m.b_pt);
h5_write(gr, "size", m.size());
h5_write(gr, "kind", k);
}
/// Read from HDF5
friend void h5_read(h5::group fg, std::string subgroup_name, linear_mesh &m) {
h5::group gr = fg.open_group(subgroup_name);
typename linear_mesh::domain_t dom;
double a, b;
size_t L;
int k;
mesh_kind mk;
h5_read(gr, "domain", dom);
h5_read(gr, "min", a);
h5_read(gr, "max", b);
h5_read(gr, "size", L);
h5_read(gr, "kind", k);
switch (k) {
case 0:
mk = half_bins;
break;
case 1:
mk = full_bins;
break;
case 2:
mk = without_last;
break;
}
m = linear_mesh(std::move(dom), a, b, L, mk);
}
// BOOST Serialization
friend class boost::serialization::access;
template <class Archive> void serialize(Archive &ar, const unsigned int version) {
ar &boost::serialization::make_nvp("domain", _dom);
ar &boost::serialization::make_nvp("a_pt", a_pt);
ar &boost::serialization::make_nvp("b_pt", b_pt);
ar &boost::serialization::make_nvp("xmin", xmin);
ar &boost::serialization::make_nvp("xmax", xmax);
ar &boost::serialization::make_nvp("del", del);
ar &boost::serialization::make_nvp("size", L);
ar &boost::serialization::make_nvp("kind", meshk);
}
friend std::ostream &operator<<(std::ostream &sout, linear_mesh const &m) { return sout << "Linear Mesh of size " << m.L; }
private:
domain_t _dom;
size_t L;
double a_pt, b_pt;
double xmin, xmax;
double del;
mesh_kind meshk;
};
// UNUSED
/// Simple approximation of a point of the domain by a mesh point. No check
template <typename D> size_t get_closest_mesh_pt_index(linear_mesh<D> const &mesh, typename D::point_t const &x) {
double a = (x - mesh.x_min()) / mesh.delta();
return std::floor(a);
}
/// Approximation of a point of the domain by a mesh point
template <typename D> std::tuple<bool, long, double> windowing(linear_mesh<D> const &mesh, typename D::point_t const &x) {
double a = (x - mesh.x_min()) / mesh.delta();
long i = std::floor(a), imax = long(mesh.size()) - 1;
bool in = (i >= 0) && (i < imax);
double w = a - i;
if (i == imax) {
--i;
in = (std::abs(w) < 1.e-14);
w = 1.0;
}
return std::make_tuple(in, i, w);
// return std::make_tuple(in, (in ? i : 0),w);
}
}
}
#endif