3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-25 13:53:40 +01:00
dft_tools/pytriqs/gf/local/gf_imfreq.py
Michel Ferrero f0dfabff38 Change tail implementation with fixed array size
Now the tail have a fixed size. It actually makes everything simpler. I took
order_min = -1 and order_max = 8. This makes the tails compatible with the
previous implementation. However we might want to change this to something like
-10, 10 so that they are self-contained. This commit should also fix issue #11.
2013-09-12 15:21:56 +02:00

141 lines
6.0 KiB
Python

from gf import GfImFreq_cython, MeshImFreq, TailGf
from gf_generic import GfGeneric
import numpy
from scipy.optimize import leastsq
from tools import get_indices_in_dict
from nothing import Nothing
import impl_plot
class GfImFreq ( GfGeneric, GfImFreq_cython ) :
def __init__(self, **d):
"""
The constructor have two variants : you can either provide the mesh in
Matsubara frequencies yourself, or give the parameters to build it.
All parameters must be given with keyword arguments.
GfImFreq(indices, beta, statistic, n_points, data, tail, name)
* ``indices``: a list of indices names of the block
* ``beta``: Inverse Temperature
* ``statistic``: 'F' or 'B'
* ``n_points``: Number of Matsubara frequencies
* ``data``: A numpy array of dimensions (len(indices),len(indices),n_points) representing the value of the Green function on the mesh.
* ``tail``: the tail
* ``name``: a name of the GF
GfImFreq(indices, mesh, data, tail, name)
* ``indices``: a list of indices names of the block
* ``mesh``: a MeshGf object, such that mesh.TypeGF== GF_Type.Imaginary_Frequency
* ``data``: A numpy array of dimensions (len(indices),len(indices),:) representing the value of the Green function on the mesh.
* ``tail``: the tail
* ``name``: a name of the GF
.. warning::
The Green function take a **view** of the array data, and a **reference** to the tail.
"""
mesh = d.pop('mesh',None)
if mesh is None :
if 'beta' not in d : raise ValueError, "beta not provided"
beta = float(d.pop('beta'))
n_max = d.pop('n_points',1025)
stat = d.pop('statistic','F')
mesh = MeshImFreq(beta,stat,n_max)
self.dtype = numpy.complex_
indices_pack = get_indices_in_dict(d)
indicesL, indicesR = indices_pack
N1, N2 = len(indicesL),len(indicesR)
data = d.pop('data') if 'data' in d else numpy.zeros((len(mesh),N1,N2), self.dtype )
tail = d.pop('tail') if 'tail' in d else TailGf(shape = (N1,N2))
symmetry = d.pop('symmetry', Nothing())
name = d.pop('name','g')
assert len(d) ==0, "Unknown parameters in GFBloc constructions %s"%d.keys()
GfGeneric.__init__(self, mesh, data, tail, symmetry, indices_pack, name, GfImFreq)
GfImFreq_cython.__init__(self, mesh, data, tail)
#-------------- PLOT ---------------------------------------
def _plot_(self, opt_dict):
""" Plot protocol. opt_dict can contain :
* :param RIS: 'R', 'I', 'S', 'RI' [ default]
* :param x_window: (xmin,xmax) or None [default]
* :param name: a string [default ='']. If not '', it remplaces the name of the function just for this plot.
"""
return impl_plot.plot_base( self, opt_dict, r'$\omega_n$',
lambda name : r'%s$(i\omega_n)$'%name, True, [x.imag for x in self.mesh] )
#-------------- OTHER OPERATIONS -----------------------------------------------------
def replace_by_tail(self,start) :
d = self.data
t = self.tail
for n, om in enumerate(self.mesh) :
if n >= start : d[n,:,:] = t(om)
def fit_tail(self, fixed_coef, order_max, fit_start, fit_stop, replace_tail = True):
"""
Fit the tail of the Green's function
Input:
- fixed_coef: a 3-dim array of known coefficients for the fit starting from the order -1
- order_max: highest order in the fit
- fit_start, fit_stop: fit the data between fit_start and fit_stop
Output:
On output all the data above fit_start is replaced by the fitted tail
and the new moments are included in the Green's function
"""
# Turn known_coefs into a numpy array if ever it is not already the case
known_coef = fixed_coef
# Change the order_max
# It is assumed that any known_coef will start at order -1
self.tail = TailGf(shape = (self.N1,self.N2))
# Fill up two arrays with the frequencies and values over the range of interest
ninit, nstop = 0, -1
x = []
for om in self.mesh:
if (om.imag < fit_start): ninit = ninit+1
if (om.imag <= fit_stop): nstop = nstop+1
if (om.imag <= fit_stop and om.imag >= fit_start): x += [om]
omegas = numpy.array(x)
values = self.data[ninit:nstop+1,:,:]
# Loop over the indices of the Green's function
for n1,indR in enumerate(self.indicesR):
for n2,indL in enumerate(self.indicesL):
# Construct the part of the fitting functions which is known
f_known = numpy.zeros((len(omegas)),numpy.complex)
for order in range(len(known_coef[n1][n2])):
f_known += known_coef[n1][n2][order]*omegas**(1-order)
# Compute how many free parameters we have and give an initial guess
len_param = order_max-len(known_coef[n1][n2])+2
p0 = len_param*[1.0]
# This is the function to be minimized, the diff between the original
# data in values and the fitting function
def fct(p):
y_fct = 1.0*f_known
for order in range(len_param):
y_fct += p[order]*omegas**(1-len(known_coef[n1][n2])-order)
y_fct -= values[:,n1,n2]
return abs(y_fct)
# Now call the minimizing function
sol = leastsq(fct, p0, maxfev=1000*len_param)
# Put the known and the new found moments in the tail
for order in range(len(known_coef[n1][n2])):
self.tail[order-1][n1,n2] = numpy.array([[ known_coef[n1][n2][order] ]])
for order, moment in enumerate(sol[0]):
self.tail[len(known_coef[n1][n2])+order-1][n1,n2] = numpy.array([[ moment ]])
# Replace then end of the Green's function by the tail
if replace_tail: self.replace_by_tail(ninit);