mirror of
https://github.com/triqs/dft_tools
synced 2024-12-30 16:15:47 +01:00
887 lines
37 KiB
Fortran
887 lines
37 KiB
Fortran
|
|
c ******************************************************************************
|
|
c
|
|
c TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
c
|
|
c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn
|
|
c
|
|
c TRIQS is free software: you can redistribute it and/or modify it under the
|
|
c terms of the GNU General Public License as published by the Free Software
|
|
c Foundation, either version 3 of the License, or (at your option) any later
|
|
c version.
|
|
c
|
|
c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
c details.
|
|
c
|
|
c You should have received a copy of the GNU General Public License along with
|
|
c TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
c
|
|
c *****************************************************************************/
|
|
|
|
SUBROUTINE setsym
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
C %% %%
|
|
C %% This subroutine sets up the symmetry matrices of the structure %%
|
|
C %% and the local rotation matrices for each atom of the system. %%
|
|
C %% %%
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
C Definiton of the variables :
|
|
C ----------------------------
|
|
USE common_data
|
|
USE factorial
|
|
USE file_names
|
|
USE prnt
|
|
USE reps
|
|
USE symm
|
|
IMPLICIT NONE
|
|
C
|
|
COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: tmp_rot, spinrot
|
|
COMPLEX(KIND=8), DIMENSION(:,:),ALLOCATABLE :: tmat
|
|
COMPLEX(KIND=8), DIMENSION(:,:,:),ALLOCATABLE :: tmp_dmat
|
|
REAL(KIND=8) :: factor
|
|
INTEGER :: l, isym, mmax, nrefl, i, m, isrt, lms
|
|
INTEGER :: lm, is, is1
|
|
INTEGER :: iatom, imu, iatomref
|
|
REAL(KIND=8) :: det
|
|
REAL(KIND=8), DIMENSION(:),ALLOCATABLE :: bufreal
|
|
COMPLEX(KIND=8), DIMENSION(:),ALLOCATABLE :: bufcomp
|
|
COMPLEX(KIND=8), DIMENSION(:,:),ALLOCATABLE :: tmpcomp
|
|
COMPLEX(KIND=8), DIMENSION(1:2,1:2) :: spmt
|
|
|
|
C
|
|
C
|
|
WRITE(buf,'(a)')'======================================='
|
|
CALL printout(0)
|
|
WRITE(buf,'(a)')'Symmetry operations of the system'
|
|
CALL printout(1)
|
|
C
|
|
C ===========================================
|
|
C Reading of the symmetry file case.dmftsym :
|
|
C ===========================================
|
|
CALL setfact(170)
|
|
READ(iusym,*)nsym
|
|
WRITE(buf,'(a,i4)')'Number of Symmetries = ',nsym
|
|
CALL printout(0)
|
|
CALL printout(0)
|
|
C nsym = total number of symmetry operations for the structure
|
|
lsym=lmax
|
|
nlmsym=2*lsym+1
|
|
C lsym = maximal orbital number for the symmetry
|
|
C nlmsym = maximal size of the representation for the symmetry
|
|
ALLOCATE(srot(nsym))
|
|
DO isym=1,nsym
|
|
ALLOCATE(srot(isym)%perm(natom))
|
|
READ(iusym,*)srot(isym)%perm
|
|
ENDDO
|
|
C srot = table of symop elements from to 1 to nsym.
|
|
C the field srot(isym)%perm = the table of permutation for the isym symmetry (table from 1 to natom)
|
|
C srot(isym)%perm(iatom) = R[isym](iatom) = image by R[isym] fo iatom
|
|
WRITE(buf,'(a)')'Properties of the symmetry operations :'
|
|
CALL printout(0)
|
|
WRITE(buf,'(a)') ' alpha, beta, gamma are their Euler angles.'
|
|
CALL printout(0)
|
|
WRITE(buf,'(a)') ' iprop is the value of their determinant.'
|
|
CALL printout(0)
|
|
CALL printout(0)
|
|
WRITE(buf,'(a)')' SYM.OP. alpha beta gamma iprop'
|
|
CALL printout(0)
|
|
DO isym=1,nsym
|
|
READ(iusym,'()')
|
|
READ(iusym,'()')
|
|
READ(iusym,'(3(f6.1),i3)') srot(isym)%a, srot(isym)%b,
|
|
& srot(isym)%g, srot(isym)%iprop
|
|
C Printing the matrices parameters in the file case.outdmftpr
|
|
WRITE(buf,'(i5,3F10.1,5x,i3)')isym,
|
|
& srot(isym)%a,srot(isym)%b,srot(isym)%g,srot(isym)%iprop
|
|
CALL printout(0)
|
|
srot(isym)%a=srot(isym)%a/180d0*Pi
|
|
srot(isym)%b=srot(isym)%b/180d0*Pi
|
|
srot(isym)%g=srot(isym)%g/180d0*Pi
|
|
C the field srot(isym)%a is linked to the Euler precession angle (alpha)
|
|
C the field srot(isym)%b is linked to the Euler nutation angle (beta)
|
|
C the field srot(isym)%c is linked to the Euler intrinsic rotation angle (gamma)
|
|
C They are read in case.dmftsym in degree and are then transformed into radians
|
|
C the field sort(isym)% iprop = value of the transformation determinant (1 or -1),
|
|
C determines if there is an inversion in the transformation
|
|
READ(iusym,*)(srot(isym)%krotm(1:3,i),i=1,3)
|
|
srot(isym)%krotm(1:3,1:3)=
|
|
& TRANSPOSE(srot(isym)%krotm(1:3,1:3))
|
|
C the field srot(isym)%krotm = 3x3 matrices of rotation associated to the transformation (R[isym]).
|
|
C (without the global inversion). The matrix was multiplied by the value of iprop before being written in case.dmftsym.
|
|
C This reading line was chosen to be consistent with the writing line in rotmat_dmft (in SRC_lapw2)
|
|
ENDDO
|
|
C
|
|
C =============================================================
|
|
C Determination of the properties for each symmetry operation :
|
|
C =============================================================
|
|
C
|
|
C Creation of the rotational matrices for each orbital :
|
|
C ------------------------------------------------------
|
|
DO isym=1,nsym
|
|
ALLOCATE(srot(isym)%rotl(-lsym:lsym,-lsym:lsym,lsym))
|
|
srot(isym)%rotl=0.d0
|
|
ALLOCATE(tmat(1:2*lsym+1,1:2*lsym+1))
|
|
DO l=1,lsym
|
|
C Use of the subroutine dmat to compute the the rotational matrix
|
|
C associated to the isym symmetry operation in a (2*l+1) space :
|
|
CALL dmat(l,srot(isym)%a,srot(isym)%b,srot(isym)%g,
|
|
& REAL(srot(isym)%iprop,KIND=8),tmat,2*lsym+1)
|
|
srot(isym)%rotl(-l:l,-l:l,l)=tmat(1:2*l+1,1:2*l+1)
|
|
C srot(isym)%rotl = table of the rotationnal matrices of the symmetry operation
|
|
C for the different l orbital (from 1 to lsym), in the usual complex basis : dmat = D(R[isym])_l
|
|
C srot(isym)%rotl = D(R[isym])_{lm}
|
|
ENDDO
|
|
DEALLOCATE(tmat)
|
|
C
|
|
C
|
|
C Determination of the fields timeinv and phase (if SP+SO computations):
|
|
C ----------------------------------------------------------------------
|
|
C If the calculation is spin-polarized with spin-orbit, the magnetic spacegroup of the
|
|
C system is of type III (black-and-white type). The operation must then be classified
|
|
C according to their keeping the z-axis invariant or not.
|
|
C
|
|
C srot(isym)%timeinv = boolean indicating if a time reversal operation is required
|
|
IF(ifSP.AND.ifSO) THEN
|
|
det=srot(isym)%krotm(1,1)*srot(isym)%krotm(2,2)-
|
|
- srot(isym)%krotm(1,2)*srot(isym)%krotm(2,1)
|
|
C the value of det is cos(srot(isym)%b) even if the rotation is improper.
|
|
IF(det < 0.0d0) THEN
|
|
srot(isym)%timeinv=.TRUE.
|
|
C The direction of the magnetic moment is changed to its opposite ( srot(isym)%b=pi ),
|
|
C A time reversal operation is required.
|
|
srot(isym)%phase=srot(isym)%g-srot(isym)%a
|
|
C In this case, we define a phase factor for the off-diagonal term (up/dn term)
|
|
C which is srot(isym)%phase= g-a = 2pi+(alpha-gamma)
|
|
ELSE
|
|
srot(isym)%timeinv=.FALSE.
|
|
C The direction of the magnetic moment is unchanged ( srot(isym)%b=0 ),
|
|
C no time reversal operation is required.
|
|
srot(isym)%phase=srot(isym)%a+srot(isym)%g
|
|
C In this case, we define a phase factor for the off-diagonal term (up/dn term)
|
|
C which is srot(isym)%phase= a+g = 2pi-(alpha+gamma)
|
|
ENDIF
|
|
ELSE
|
|
C If the calculation is either spin-polarized without spin-orbit, or paramagnetic
|
|
C the magnetic spacegroup of the system is of type I (ordinary type). The operation
|
|
C are thus merely applied.
|
|
srot(isym)%timeinv=.FALSE.
|
|
srot(isym)%phase=0.d0
|
|
ENDIF ! End of the ifSP if-then-else
|
|
C
|
|
C
|
|
C Computation of the rotational matrices in each sort basis :
|
|
C -----------------------------------------------------------
|
|
ALLOCATE(srot(isym)%rotrep(lsym,nsort))
|
|
C
|
|
C Initialization of the srot(isym)%rotrep field
|
|
C This field is a table of size (lsym*nsort) which contains the rotation matrices
|
|
C of isym in the representation basis associated to each included orbital of each atom.
|
|
C srot(isym)%rotrep = D(R[isym])_{new_i}
|
|
DO isrt=1,nsort
|
|
DO l=1,lsym
|
|
ALLOCATE(srot(isym)%rotrep(l,isrt)%mat(1,1))
|
|
srot(isym)%rotrep(l,isrt)%mat(1,1)=0.d0
|
|
ENDDO
|
|
ENDDO
|
|
C
|
|
C Computation of the elements 'mat' in srot(isym)%rotrep(l,isrt)
|
|
DO isrt=1,nsort
|
|
IF (notinclude(isrt)) cycle
|
|
DO l=1,lsym
|
|
C The considered orbital is not included, hence no computation
|
|
IF (lsort(l,isrt)==0) cycle
|
|
C The considered orbital is included
|
|
IF (reptrans(l,isrt)%ifmixing) THEN
|
|
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) )
|
|
C If this option is used, then ifSO=.TRUE. (because of the restriction in set_ang_trans.f)
|
|
C Moreover ifSP=.TRUE. (since ifSO => ifSP in this version)
|
|
DEALLOCATE(srot(isym)%rotrep(l,isrt)%mat)
|
|
ALLOCATE(srot(isym)%rotrep(l,isrt)%mat
|
|
& (1:2*(2*l+1),1:2*(2*l+1)))
|
|
ALLOCATE(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)))
|
|
ALLOCATE(spinrot(1:2*(2*l+1),1:2*(2*l+1)))
|
|
spinrot=0.d0
|
|
C Computation of the full spinor rotation matrix associated to isym.
|
|
CALL spinrotmat(spinrot,isym,l)
|
|
C Computation of srot(isym)%rotrep(l,isrt)%mat
|
|
tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL(
|
|
& reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1)),
|
|
& spinrot(1:2*(2*l+1),1:2*(2*l+1)))
|
|
srot(isym)%rotrep(l,isrt)%mat(1:2*(2*l+1),1:2*(2*l+1))=
|
|
= MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),
|
|
& TRANSPOSE(CONJG(reptrans(l,isrt)%transmat
|
|
& (1:2*(2*l+1),1:2*(2*l+1)))))
|
|
C the field srot(isym)%rotrep(l,isrt)%mat = (reptrans)*spinrot(l)*inverse(reptrans)
|
|
C or srot(isym)%rotrep = D(R[isym])_{new_i} = <new_i|lm> D(R[isym])_{lm} <lm|new_i>
|
|
C which is exactly the expression of the spinor rotation matrix in the new basis.
|
|
DEALLOCATE(tmp_rot)
|
|
DEALLOCATE(spinrot)
|
|
ELSE
|
|
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only)
|
|
DEALLOCATE(srot(isym)%rotrep(l,isrt)%mat)
|
|
ALLOCATE(srot(isym)%rotrep(l,isrt)%mat(-l:l,-l:l))
|
|
ALLOCATE(tmp_rot(-l:l,-l:l))
|
|
C Computation of srot(isym)%rotrep(l,isrt)%mat
|
|
tmp_rot(-l:l,-l:l)=MATMUL(
|
|
& reptrans(l,isrt)%transmat(-l:l,-l:l),
|
|
& srot(isym)%rotl(-l:l,-l:l,l))
|
|
srot(isym)%rotrep(l,isrt)%mat(-l:l,-l:l)=
|
|
= MATMUL(tmp_rot(-l:l,-l:l),
|
|
& TRANSPOSE(CONJG(reptrans(l,isrt)%transmat(-l:l,-l:l))))
|
|
C the field srot(isym)%rotrep(l,isrt)%mat = (reptrans)*rotl*inverse(reptrans)
|
|
C or srot(isym)%rotrep = D(R[isym])_{new_i} = <new_i|lm> D(R[isym])_{lm} <lm|new_i>
|
|
C which is exactly the expression of the rotation matrix for the up/up block in the new basis.
|
|
DEALLOCATE(tmp_rot)
|
|
ENDIF
|
|
ENDDO ! End of the l loop
|
|
ENDDO ! End of the isrt loop
|
|
ENDDO ! End of the isym loop
|
|
C
|
|
C
|
|
C =============================================================
|
|
C Printing the matrix parameters in the file fort.17 for test :
|
|
C =============================================================
|
|
DO isym=1,nsym
|
|
WRITE(17,'()')
|
|
WRITE(17,'(a,i3)')' Sym. op.: ',isym
|
|
DO i =1,3
|
|
ALLOCATE(bufreal(3))
|
|
bufreal(1:3)=srot(isym)%krotm(i,1:3)
|
|
WRITE(17,'(3f10.4)') bufreal
|
|
DEALLOCATE(bufreal)
|
|
ENDDO
|
|
WRITE(17,'(a,3f8.1,i4)')'a, b, g, iprop =',
|
|
& srot(isym)%a*180d0/Pi,srot(isym)%b*180d0/Pi,
|
|
& srot(isym)%g*180d0/Pi,srot(isym)%iprop
|
|
C Printing the data relative to SP option
|
|
IF (ifSP) THEN
|
|
WRITE(17,*)'If DIR. magn. mom. is inverted :'
|
|
& ,srot(isym)%timeinv
|
|
WRITE(17,*)'phase = ',srot(isym)%phase
|
|
ENDIF
|
|
C Printing the rotational matrices for each orbital number l.
|
|
WRITE(17,'()')
|
|
DO l=1,lsym
|
|
WRITE(17,'(a,a,i2)')'Rotation matrix ',
|
|
& 'D(R[isym])_{lm} for l = ',l
|
|
DO m=-l,l
|
|
ALLOCATE(bufcomp(-l:l))
|
|
bufcomp(-l:l)=srot(isym)%rotl(m,-l:l,l)
|
|
WRITE(17,'(7(2f7.3,x))') bufcomp
|
|
DEALLOCATE(bufcomp)
|
|
ENDDO
|
|
ENDDO
|
|
C Printing the matrices rotrep(l,isrt)%mat
|
|
WRITE(17,'()')
|
|
DO isrt=1,nsort
|
|
IF (notinclude(isrt)) cycle
|
|
DO l=1,lsym
|
|
IF (lsort(l,isrt)==0) cycle
|
|
WRITE(17,'(a,i2,a,i2)')'Representation for isrt = ',
|
|
& isrt,' and l= ',l
|
|
IF (reptrans(l,isrt)%ifmixing) THEN
|
|
DO m=1,2*(2*l+1)
|
|
ALLOCATE(bufcomp(1:2*(2*l+1)))
|
|
bufcomp(1:2*(2*l+1))=
|
|
& srot(isym)%rotrep(l,isrt)%mat(m,1:2*(2*l+1))
|
|
WRITE(17,'(7(2f7.3,x))') bufcomp
|
|
DEALLOCATE(bufcomp)
|
|
ENDDO
|
|
ELSE
|
|
DO m=-l,l
|
|
ALLOCATE(bufcomp(-l:l))
|
|
bufcomp(-l:l)=
|
|
& srot(isym)%rotrep(l,isrt)%mat(m,-l:l)
|
|
WRITE(17,'(7(2f7.3,x))') bufcomp
|
|
DEALLOCATE(bufcomp)
|
|
ENDDO
|
|
ENDIF
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
C
|
|
C
|
|
C =================================================================================
|
|
C Applying time-reversal operator if the system is spin-polarized with Spin Orbit :
|
|
C =================================================================================
|
|
C
|
|
C If the calculation is spin-polarized with spin-orbit, the magnetic spacegroup of the compound
|
|
C is of type III (black-and-white). The symmetry operations which reverse the z-axis must be
|
|
C multiplied by the time-reversal operator.
|
|
C If spin-orbit is not taken into account, all the field timeinv are .FALSE. and no time-reversal
|
|
C is applied, since the magnetic spacegroup of the compound is of type I (ordinary).
|
|
IF (ifSP) THEN
|
|
C The modification of srot(isym)%rotl is done for each isym
|
|
DO isym=1,nsym
|
|
DO l=1,lsym
|
|
IF (srot(isym)%timeinv) THEN
|
|
C The field srot(isym)%rotl is multiplied by the time-reversal operator in the complex basis.
|
|
ALLOCATE(tmpcomp(-l:l,-l:l))
|
|
tmpcomp(-l:l,-l:l)=
|
|
& srot(isym)%rotl(-l:l,-l:l,l)
|
|
CALL timeinv_op(tmpcomp,(2*l+1),l,0)
|
|
srot(isym)%rotl(-l:l,-l:l,l)=tmpcomp(-l:l,-l:l)
|
|
DEALLOCATE(tmpcomp)
|
|
C The field srot(isym)%phase must not be modified.
|
|
END IF
|
|
END DO
|
|
END DO
|
|
C
|
|
C The other modification are done for each (isrt,l) included.
|
|
DO isrt=1,nsort
|
|
IF (notinclude(isrt)) cycle
|
|
DO l=1,lsym
|
|
C The considered orbital is not included, hence no computation
|
|
IF (lsort(l,isrt)==0) cycle
|
|
C If the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) )
|
|
IF (reptrans(l,isrt)%ifmixing) THEN
|
|
DO isym=1,nsym
|
|
IF (srot(isym)%timeinv) THEN
|
|
C The field srot(isym)%rotrep(l,isrt)%mat is multiplied by the time-reversal operator in the corresponding basis of isrt.
|
|
CALL timeinv_op(srot(isym)%rotrep(l,isrt)%mat,
|
|
& 2*(2*l+1),l,isrt)
|
|
END IF
|
|
END DO ! End of the isym loop
|
|
C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only)
|
|
ELSE
|
|
DO isym=1,nsym
|
|
IF (srot(isym)%timeinv) THEN
|
|
C The field srot(isym)%rotrep(l,isrt)%mat is multiplied by the time-reversal operator in the corresponding basis of isrt.
|
|
CALL timeinv_op(srot(isym)%rotrep(l,isrt)%mat,
|
|
& (2*l+1),l,isrt)
|
|
END IF
|
|
END DO ! End of the isym loop
|
|
END IF ! End of the ifmixing if-then-else
|
|
END DO ! End of the l loop
|
|
END DO ! End of the isrt loop
|
|
END IF ! End of the ifSP if-then-else
|
|
C
|
|
C
|
|
C ======================================================================
|
|
C Printing the time-reversal modification in the file fort.17 for test :
|
|
C ======================================================================
|
|
IF (ifSP.AND.ifSO) THEN
|
|
WRITE(17,'()')
|
|
WRITE(17,'(a)') '---With time-reversal operation---'
|
|
WRITE(17,'()')
|
|
C Printing the srot(isym) operations if necessary :
|
|
DO isym=1,nsym
|
|
IF (srot(isym)%timeinv) THEN
|
|
WRITE(17,'()')
|
|
WRITE(17,'(a,i3)')' Sym. op.: ',isym
|
|
C Printing the new rotational matrices for each orbital number l.
|
|
WRITE(17,'()')
|
|
DO l=1,lsym
|
|
WRITE(17,'(a,a,i2)')'T*Rotation matrix ',
|
|
& 'D(T.R[isym])_{lm} for l = ',l
|
|
DO m=-l,l
|
|
ALLOCATE(bufcomp(-l:l))
|
|
bufcomp(-l:l)=srot(isym)%rotl(m,-l:l,l)
|
|
WRITE(17,'(7(2f7.3,x))') bufcomp
|
|
DEALLOCATE(bufcomp)
|
|
ENDDO
|
|
ENDDO
|
|
C Printing the new matrices rotrep(l,isrt)%mat
|
|
WRITE(17,'()')
|
|
DO isrt=1,nsort
|
|
IF (notinclude(isrt)) cycle
|
|
DO l=1,lsym
|
|
IF (lsort(l,isrt)==0) cycle
|
|
WRITE(17,'(a,i2,a,i2)')
|
|
& 'Representation for isrt = ',isrt,' and l= ',l
|
|
IF (reptrans(l,isrt)%ifmixing) THEN
|
|
DO m=1,2*(2*l+1)
|
|
ALLOCATE(bufcomp(1:2*(2*l+1)))
|
|
bufcomp(1:2*(2*l+1))=
|
|
& srot(isym)%rotrep(l,isrt)%mat(m,1:2*(2*l+1))
|
|
WRITE(17,'(7(2f7.3,x))') bufcomp
|
|
DEALLOCATE(bufcomp)
|
|
ENDDO
|
|
ELSE
|
|
DO m=-l,l
|
|
ALLOCATE(bufcomp(-l:l))
|
|
bufcomp(-l:l)=
|
|
& srot(isym)%rotrep(l,isrt)%mat(m,-l:l)
|
|
WRITE(17,'(7(2f7.3,x))') bufcomp
|
|
DEALLOCATE(bufcomp)
|
|
END DO
|
|
END IF
|
|
END DO
|
|
END DO
|
|
END IF
|
|
ENDDO
|
|
END IF
|
|
C
|
|
C
|
|
C ============================================================
|
|
C Creation of the global->local coordinate rotation matrices :
|
|
C ============================================================
|
|
ALLOCATE(rotloc(natom))
|
|
CALL printout(1)
|
|
WRITE(buf,'(a)')'-------------------------------------'
|
|
CALL printout(0)
|
|
WRITE(buf,'(a)')'Global-to-local-coordinates rotations'
|
|
CALL printout(1)
|
|
WRITE(buf,'(a)')'Properties of the symmetry operations :'
|
|
CALL printout(0)
|
|
WRITE(buf,'(a)') ' alpha, beta, gamma are their Euler angles.'
|
|
CALL printout(0)
|
|
WRITE(buf,'(a)') ' iprop is the value of their determinant.'
|
|
CALL printout(0)
|
|
CALL printout(0)
|
|
WRITE(buf,'(a)')' SORT alpha beta gamma iprop'
|
|
CALL printout(0)
|
|
READ(iusym,'()')
|
|
DO isrt=1,nsort
|
|
C Reading the data for the representative atom in case.dmftsym and printing them in case.outdmftpr :
|
|
C --------------------------------------------------------------------------------------------------
|
|
iatomref=SUM(nmult(0:isrt-1))+1
|
|
READ(iusym,'()')
|
|
DO i=1,3
|
|
ALLOCATE(bufreal(3))
|
|
READ(iusym,*) bufreal
|
|
rotloc(iatomref)%krotm(i,1:3)=bufreal(1:3)
|
|
DEALLOCATE(bufreal)
|
|
ENDDO
|
|
C the field rotloc(iatomref)%krotm = 3x3 matrices of rotation associated to the transformation Rloc
|
|
C Rloc = <x_global | x_local >. The matrix was not multiplied by the value of iprop before being
|
|
C written in case.dmftsym (cf. SRC_lapw2/rotmat_dmft.f).
|
|
C rotloc(iatomref)%krotm can thus be either a proper or an improper rotation (with inversion).
|
|
C This reading line was chosen to be consistent with the writing line in rotmat_dmft (in SRC_lapw2)
|
|
READ(iusym,*)rotloc(iatomref)%a,rotloc(iatomref)%b,
|
|
& rotloc(iatomref)%g, rotloc(iatomref)%iprop
|
|
WRITE(buf,'(i5,3F10.1,5x,i3)')isrt,
|
|
& rotloc(iatomref)%a, rotloc(iatomref)%b,
|
|
& rotloc(iatomref)%g, rotloc(iatomref)%iprop
|
|
CALL printout(0)
|
|
rotloc(iatomref)%a=rotloc(iatomref)%a/180d0*Pi
|
|
rotloc(iatomref)%b=rotloc(iatomref)%b/180d0*Pi
|
|
rotloc(iatomref)%g=rotloc(iatomref)%g/180d0*Pi
|
|
C the field rotloc%a is linked to the Euler precession angle (alpha)
|
|
C the field rotloc%b is linked to the Euler nutation angle (beta)
|
|
C the field rotloc%c is linked to the Euler intrinsic rotation angle (gamma)
|
|
C They are read in case.dmftsym and printed in case.outdmftpr in degree and are then transformed into radians
|
|
C the field rotloc%iprop = value of the transformation determinant (should be 1 in almost all the cases),
|
|
C determines if there is an inversion in the transformation from global to local basis.
|
|
rotloc(iatomref)%krotm(1:3,1:3)=rotloc(iatomref)%iprop*
|
|
& rotloc(iatomref)%krotm(1:3,1:3)
|
|
C Now, the field rotloc(iatomref)%krotm described only the proper rotation associated to the transformation.
|
|
C
|
|
C Use of the subroutine dmat to compute the rotational matrix
|
|
C associated to the rotloc(iatomref) operation in a (2*l+1) orbital space :
|
|
ALLOCATE(tmat(1:2*lsym+1,1:2*lsym+1))
|
|
ALLOCATE(tmp_dmat(1:2*lsym+1,1:2*lsym+1,1:lsym))
|
|
DO l=1,lsym
|
|
tmat=0.d0
|
|
CALL dmat(l,rotloc(iatomref)%a,rotloc(iatomref)%b,
|
|
& rotloc(iatomref)%g,REAL(rotloc(iatomref)%iprop,KIND=8),
|
|
& tmat,2*lsym+1)
|
|
tmp_dmat(1:2*l+1,1:2*l+1,l)=tmat(1:2*l+1,1:2*l+1)
|
|
C tmp_dmat = D(Rloc)_{lm}
|
|
ENDDO
|
|
DEALLOCATE(tmat)
|
|
C
|
|
C
|
|
C Storing the rotloc matrix and initializing the other fields for all equivalent atoms :
|
|
C --------------------------------------------------------------------------------------
|
|
C All the equivalent atoms will have the same rotloc description. These data
|
|
C will be correctly redifined in the subroutine set_rotloc, where the action of the
|
|
C symmetry operation which transforms the representative atom in the considered one
|
|
C will be added.
|
|
DO imu=1,nmult(isrt)
|
|
iatom=SUM(nmult(0:isrt-1))+imu
|
|
IF(ifSP.AND.ifSO) THEN
|
|
C In this case, we have to consider the spinor rotation matrix associated to rotloc
|
|
C (the value of the Euler angle beta can be anything between 0 and Pi)
|
|
ALLOCATE(rotloc(iatom)%rotl(1:2*(2*lsym+1),
|
|
& 1:2*(2*lsym+1),lsym))
|
|
rotloc(iatom)%rotl=0.d0
|
|
DO l=1,lsym
|
|
C For each orbital (from l=0 to lsym)
|
|
C Calculation of the representation matrix of rotloc in the spin-space
|
|
C in agreement with Wien conventions used for the definition of spmt (in SRC_lapwdm/sym.f)
|
|
C Up/up and Dn/dn terms
|
|
factor=(rotloc(iatomref)%a+rotloc(iatomref)%g)/2.d0
|
|
spmt(1,1)=EXP(CMPLX(0.d0,factor))
|
|
& *DCOS(rotloc(iatomref)%b/2.d0)
|
|
spmt(2,2)=CONJG(spmt(1,1))
|
|
C Up/dn and Dn/up terms
|
|
factor=-(rotloc(iatomref)%a-rotloc(iatomref)%g)/2.d0
|
|
spmt(1,2)=EXP(CMPLX(0.d0,factor))
|
|
& *DSIN(rotloc(iatomref)%b/2.d0)
|
|
spmt(2,1)=-CONJG(spmt(1,2))
|
|
C Up/up block :
|
|
rotloc(iatom)%rotl(1:2*l+1,1:2*l+1,l)=
|
|
& spmt(1,1)*tmp_dmat(1:2*l+1,1:2*l+1,l)
|
|
C Dn/dn block :
|
|
rotloc(iatom)%rotl(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1),l)=
|
|
& spmt(2,2)*tmp_dmat(1:2*l+1,1:2*l+1,l)
|
|
C Up/dn block :
|
|
rotloc(iatom)%rotl(1:2*l+1,2*l+2:2*(2*l+1),l)=
|
|
& spmt(1,2)*tmp_dmat(1:2*l+1,1:2*l+1,l)
|
|
C Dn/up block :
|
|
rotloc(iatom)%rotl(2*l+2:2*(2*l+1),1:2*l+1,l)=
|
|
& spmt(2,1)*tmp_dmat(1:2*l+1,1:2*l+1,l)
|
|
C The fields rotloc(iatom)%rotl now contain D(rotloc)_{lm}xD(rotloc)_{1/2}
|
|
ENDDO
|
|
ELSE
|
|
C In this case, we can consider the spatial rotation matrix only
|
|
C since each spin space is independent (paramagnetic or spin-polarized without SO computation)
|
|
ALLOCATE(rotloc(iatom)%rotl(-lsym:lsym,-lsym:lsym,lsym))
|
|
rotloc(iatom)%rotl=0.d0
|
|
DO l=1,lsym
|
|
rotloc(iatom)%rotl(-l:l,-l:l,l)=
|
|
= tmp_dmat(1:2*l+1,1:2*l+1,l)
|
|
C The fields rotloc(iatom)%rotl now contain D(rotloc)_{lm}
|
|
ENDDO
|
|
ENDIF
|
|
C The fields rotloc(iatom)%a,b and c will now contain the parameters linked to
|
|
C the Euler angles of the local rotation rotloc.
|
|
IF(imu.gt.1) THEN
|
|
rotloc(iatom)%a=rotloc(iatomref)%a
|
|
rotloc(iatom)%b=rotloc(iatomref)%b
|
|
rotloc(iatom)%g=rotloc(iatomref)%g
|
|
rotloc(iatom)%iprop=rotloc(iatomref)%iprop
|
|
rotloc(iatom)%krotm(1:3,1:3)=
|
|
= rotloc(iatomref)%krotm(1:3,1:3)
|
|
ENDIF
|
|
C The fields rotloc%phase, timeinv and srotnum are initialized to their
|
|
C default value.
|
|
rotloc(iatom)%phase=0.d0
|
|
rotloc(iatom)%timeinv=.FALSE.
|
|
rotloc(iatom)%srotnum=0
|
|
C the field rotloc(iatom)%srotnum and timeinv will be recalculated in set_rotloc.
|
|
ENDDO
|
|
DEALLOCATE(tmp_dmat)
|
|
ENDDO ! End of the isrt loop
|
|
C
|
|
C
|
|
C ====================================================================
|
|
C Printing the rotloc matrix parameters in the file fort.17 for test :
|
|
C ====================================================================
|
|
DO isrt=1,nsort
|
|
IF (notinclude(isrt)) cycle
|
|
DO imu=1,nmult(isrt)
|
|
iatom=SUM(nmult(0:isrt-1))+imu
|
|
WRITE(17,'()')
|
|
WRITE(17,'(2(a,i3))')' SORT ',isrt,' IMU= ',imu
|
|
DO i=1,3
|
|
ALLOCATE(bufreal(3))
|
|
bufreal(1:3)=rotloc(iatom)%krotm(i,1:3)
|
|
WRITE(17,'(3f10.4)') bufreal
|
|
DEALLOCATE(bufreal)
|
|
ENDDO
|
|
WRITE(17,'(a,3f8.1,i4)')'a, b, g, iprop ==',
|
|
& rotloc(iatom)%a*180d0/Pi,rotloc(iatom)%b*180d0/Pi,
|
|
& rotloc(iatom)%g*180d0/Pi,rotloc(iatom)%iprop
|
|
C Printing the data relative to SP option
|
|
IF (ifSP) THEN
|
|
WRITE(17,*)'If DIR. magn. mom. is inverted :'
|
|
& ,rotloc(iatom)%timeinv
|
|
WRITE(17,*)'phase = ',rotloc(iatom)%phase
|
|
ENDIF
|
|
C Printing the rotloc matrices for each orbital number l.
|
|
WRITE(17,'()')
|
|
DO l=1,lsym
|
|
WRITE(17,'(a,a,i2)')'Rotation matrix ',
|
|
& 'D(R[isym])_{lm} for l = ',l
|
|
IF(ifSP.AND.ifSO) THEN
|
|
DO m=1,2*(2*l+1)
|
|
ALLOCATE(bufcomp(1:2*(2*l+1)))
|
|
bufcomp(1:2*(2*l+1))=rotloc(iatom)%rotl(m,1:2*(2*l+1),l)
|
|
WRITE(17,'(7(2f7.3,x))') bufcomp
|
|
DEALLOCATE(bufcomp)
|
|
ENDDO
|
|
ELSE
|
|
DO m=-l,l
|
|
ALLOCATE(bufcomp(-l:l))
|
|
bufcomp(-l:l)=rotloc(iatom)%rotl(m,-l:l,l)
|
|
WRITE(17,'(7(2f7.3,x))') bufcomp
|
|
DEALLOCATE(bufcomp)
|
|
ENDDO
|
|
ENDIF
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
C
|
|
C
|
|
C ==================================================================================
|
|
C Computation of the true local rotation matrices for each non representative atom :
|
|
C ==================================================================================
|
|
CALL set_rotloc
|
|
C
|
|
C
|
|
C ====================================================================
|
|
C Printing the rotloc matrix parameters in the file fort.17 for test :
|
|
C ====================================================================
|
|
DO isrt=1,nsort
|
|
IF (notinclude(isrt)) cycle
|
|
DO imu=1,nmult(isrt)
|
|
iatom=SUM(nmult(0:isrt-1))+imu
|
|
WRITE(17,'()')
|
|
WRITE(17,'(2(a,i3))')' SORT ',isrt,' IMU= ',imu
|
|
DO i=1,3
|
|
ALLOCATE(bufreal(3))
|
|
bufreal(1:3)=rotloc(iatom)%krotm(i,1:3)
|
|
WRITE(17,'(3f10.4)') bufreal
|
|
DEALLOCATE(bufreal)
|
|
ENDDO
|
|
WRITE(17,'(a,3f8.1,i4)')'a, b, g, iprop ==',
|
|
& rotloc(iatom)%a*180d0/Pi,rotloc(iatom)%b*180d0/Pi,
|
|
& rotloc(iatom)%g*180d0/Pi,rotloc(iatom)%iprop
|
|
C Printing the data relative to SP option
|
|
IF (ifSP) THEN
|
|
WRITE(17,*)'If DIR. magn. mom. is inverted :'
|
|
& ,rotloc(iatom)%timeinv
|
|
WRITE(17,*)'phase = ',rotloc(iatom)%phase
|
|
ENDIF
|
|
C Printing the rotloc matrices for each orbital number l.
|
|
WRITE(17,'()')
|
|
DO l=1,lsym
|
|
WRITE(17,'(a,a,i2)')'Rotation matrix ',
|
|
& 'D(R[isym])_{lm} for l = ',l
|
|
IF(ifSP.AND.ifSO) THEN
|
|
DO m=1,2*(2*l+1)
|
|
ALLOCATE(bufcomp(1:2*(2*l+1)))
|
|
bufcomp(1:2*(2*l+1))=rotloc(iatom)%rotl(m,1:2*(2*l+1),l)
|
|
WRITE(17,'(7(2f7.3,x))') bufcomp
|
|
DEALLOCATE(bufcomp)
|
|
ENDDO
|
|
ELSE
|
|
DO m=-l,l
|
|
ALLOCATE(bufcomp(-l:l))
|
|
bufcomp(-l:l)=rotloc(iatom)%rotl(m,-l:l,l)
|
|
WRITE(17,'(7(2f7.3,x))') bufcomp
|
|
DEALLOCATE(bufcomp)
|
|
ENDDO
|
|
ENDIF
|
|
ENDDO
|
|
C Printing the matrices rotrep(l)%mat
|
|
WRITE(17,'()')
|
|
DO l=1,lsym
|
|
IF (lsort(l,isrt)==0) cycle
|
|
WRITE(17,'(a,i2)')'Representation for l= ',l
|
|
IF (ifSP.AND.ifSO) THEN
|
|
DO m=1,2*(2*l+1)
|
|
ALLOCATE(bufcomp(1:2*(2*l+1)))
|
|
bufcomp(1:2*(2*l+1))=
|
|
& rotloc(iatom)%rotrep(l)%mat(m,1:2*(2*l+1))
|
|
WRITE(17,'(7(2f7.3,x))') bufcomp
|
|
DEALLOCATE(bufcomp)
|
|
ENDDO
|
|
ELSE
|
|
DO m=-l,l
|
|
ALLOCATE(bufcomp(-l:l))
|
|
bufcomp(-l:l)=
|
|
& rotloc(iatom)%rotrep(l)%mat(m,-l:l)
|
|
WRITE(17,'(7(2f7.3,x))') bufcomp
|
|
DEALLOCATE(bufcomp)
|
|
ENDDO
|
|
ENDIF
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
C
|
|
RETURN
|
|
END
|
|
|
|
|
|
|
|
|
|
Subroutine dmat(l,a,b,c,det,DD,length)
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
C %% %%
|
|
C %% This subroutine computes the inverse of the matrix of the %%
|
|
C %% representation of size (2*l+1) associated to the rotation %%
|
|
C %% described by (a,b,c) angles in Euler description and with %%
|
|
C %% determinant det. %%
|
|
C %% The obtained matrix is put in the variable DD. %%
|
|
C %% %%
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
C Definiton of the variables :
|
|
C ----------------------------
|
|
IMPLICIT REAL*8 (A-H,O-Z)
|
|
INTEGER l,m,n,ifac,length
|
|
COMPLEX*16 izero,imag, dd
|
|
dimension DD(length,length)
|
|
imag=(0d0,1d0)
|
|
izero=(0d0,0d0)
|
|
pi=acos(-1d0)
|
|
|
|
do m=-l,l
|
|
do n=-l,l
|
|
call d_matrix(l,m,n,b,dm)
|
|
if (det.lt.-0.5) then
|
|
dd(l+m+1,n+l+1)=(-1)**l*cdexp(imag*n*a)
|
|
& *cdexp(imag*m*c)*dm
|
|
else
|
|
dd(l+m+1,n+l+1)=cdexp(imag*n*a)
|
|
& *cdexp(imag*m*c)*dm
|
|
end if
|
|
3 format(2I3,2f10.6)
|
|
end do
|
|
end do
|
|
do j=1,2*l+1
|
|
end do
|
|
5 format(7(2f6.3,1X))
|
|
|
|
end
|
|
|
|
|
|
Subroutine d_matrix(l,m,n,b,dm)
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
C %% %%
|
|
C %% This subroutine is called by the subroutine dmat to compute the %%
|
|
C %% the value of the coefficient dm. %%
|
|
C %% %%
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
C Definiton of the variables :
|
|
C ----------------------------
|
|
IMPLICIT REAL*8 (A-H,O-Z)
|
|
INTEGER l,m,n,t
|
|
|
|
sum=0d0
|
|
|
|
f1=dfloat(ifac(l+m)*ifac(l-m))/
|
|
& dfloat(ifac(l+n)*ifac(l-n))
|
|
|
|
do t=0,2*l
|
|
if ((l-m-t).ge.0.AND.(l-n-t).ge.0.AND.(t+n+m).ge.0) then
|
|
C general factor
|
|
f2=dfloat(ifac(l+n)*ifac(l-n))/dfloat(ifac(l-m-t)
|
|
& *ifac(m+n+t)*ifac(l-n-t)*ifac(t))
|
|
C factor with sin(b/2)
|
|
if ((2*l-m-n-2*t).eq.0) then
|
|
f3=1.
|
|
else
|
|
f3=(sin(b/2))**(2*l-m-n-2*t)
|
|
end if
|
|
C factor with cos(b/2)
|
|
if ((2*t+n+m).eq.0) then
|
|
f4=1.
|
|
else
|
|
f4=(cos(b/2))**(2*t+n+m)
|
|
end if
|
|
! write(12,*)f1,f2,f3,f4
|
|
sum=sum+(-1)**(l-m-t)*f2*f3*f4
|
|
end if
|
|
end do
|
|
|
|
dm=sqrt(f1)*sum
|
|
end
|
|
|
|
|
|
Integer Function ifac(n)
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
C %% %%
|
|
C %% This subroutine computes the factorial of the number n %%
|
|
C %% %%
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
C Definiton of the variables :
|
|
C ----------------------------
|
|
if (n.eq.0) then
|
|
ifac=1
|
|
else
|
|
ifac=1
|
|
do j=1,n
|
|
ifac=ifac*j
|
|
end do
|
|
end if
|
|
end
|
|
|
|
|
|
SUBROUTINE spinrotmat(spinrot,isym,l)
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
C %% %%
|
|
C %% This subroutine sets up the complete spinor rotation matrix %%
|
|
C %% associated to the symmetry operation isym for the orbital l. %%
|
|
C %% %%
|
|
C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
C Definition of the variables :
|
|
C -----------------------------
|
|
USE common_data
|
|
USE symm
|
|
IMPLICIT NONE
|
|
INTEGER :: l,isym
|
|
COMPLEX(KIND=8) :: ephase, det
|
|
REAL(KIND=8) :: factor
|
|
COMPLEX(KIND=8), DIMENSION(1:2*(2*l+1),1:2*(2*l+1)) :: spinrot
|
|
COMPLEX(KIND=8), DIMENSION(1:2,1:2) :: spmt
|
|
C
|
|
spinrot=0.d0
|
|
C For a computation with spin polarized inputs :
|
|
IF (ifSP) THEN
|
|
IF (srot(isym)%timeinv) THEN
|
|
C In this case, the Euler angle Beta is Pi. The spinor rotation matrix is block-antidiagonal and
|
|
C the time reversal operation will be applied to keep the direction of the magnetization.
|
|
C Up/dn block :
|
|
factor=srot(isym)%phase/2.d0
|
|
C We remind that the field phase is (g-a) in this case.
|
|
C as a result, ephase = exp(+i(g-a)/2) = -exp(+i(alpha-gamma)/2)
|
|
C in good agreement with Wien conventions for the definition of this phase factor.
|
|
ephase=EXP(CMPLX(0.d0,factor))
|
|
spinrot(1:2*l+1,2*l+2:2*(2*l+1))=
|
|
= ephase*srot(isym)%rotl(-l:l,-l:l,l)
|
|
C Dn/up block :
|
|
ephase=-CONJG(ephase)
|
|
C now, ephase = -exp(+i(a-g)/2) = exp(-i(alpha-gamma)/2)
|
|
spinrot(2*l+2:2*(2*l+1),1:2*l+1)=
|
|
= ephase*srot(isym)%rotl(-l:l,-l:l,l)
|
|
ELSE
|
|
C In this case, the Euler angle Beta is 0. The spinor rotation matrix is block-diagonal and
|
|
C no time reversal operation will be applied.
|
|
C Up/up block :
|
|
factor=srot(isym)%phase/2.d0
|
|
C We remind that the field phase is (a+g) in this case.
|
|
C as a result, ephase = exp(+i(a+g)/2)=-exp(-i(alpha+gamma)/2)
|
|
C in good agreement with Wien conventions for the definition of this phase factor.
|
|
ephase=EXP(CMPLX(0.d0,factor))
|
|
spinrot(1:2*l+1,1:2*l+1)=
|
|
= ephase*srot(isym)%rotl(-l:l,-l:l,l)
|
|
C Dn/dn block :
|
|
ephase=CONJG(ephase)
|
|
C now, ephase = exp(-i(a+g)/2) = -exp(+i(alpha+gamma)/2)
|
|
spinrot(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))=
|
|
= ephase*srot(isym)%rotl(-l:l,-l:l,l)
|
|
ENDIF
|
|
ELSE
|
|
C For a computation with paramagnetic treatment input files. (not used in this version)
|
|
C
|
|
C In this case, there is no restriction on the value of the Euler angle beta.
|
|
C The general definition of a spinor rotation matrix is used.
|
|
C
|
|
C Calculation of the representation matrix of isym in the spin-space
|
|
C in agreement with Wien conventions used for the definition of spmt (in SRC_lapwdm/sym.f)
|
|
C Up/up and Dn/dn terms
|
|
factor=(srot(isym)%a+srot(isym)%g)/2.d0
|
|
spmt(1,1)=EXP(CMPLX(0.d0,factor))*DCOS(srot(isym)%b/2.d0)
|
|
spmt(2,2)=CONJG(spmt(1,1))
|
|
C Up/dn and Dn/up terms
|
|
factor=-(srot(isym)%a-srot(isym)%g)/2.d0
|
|
spmt(1,2)=EXP(CMPLX(0.d0,factor))*DSIN(srot(isym)%b/2.d0)
|
|
spmt(2,1)=-CONJG(spmt(1,2))
|
|
C Up/up block :
|
|
spinrot(1:2*l+1,1:2*l+1)=
|
|
& spmt(1,1)*srot(isym)%rotl(-l:l,-l:l,l)
|
|
C Dn/dn block :
|
|
spinrot(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))=
|
|
& spmt(2,2)*srot(isym)%rotl(-l:l,-l:l,l)
|
|
C Up/dn block :
|
|
spinrot(1:2*l+1,2*l+2:2*(2*l+1))=
|
|
& spmt(1,2)*srot(isym)%rotl(-l:l,-l:l,l)
|
|
C Dn/up block :
|
|
spinrot(2*l+2:2*(2*l+1),1:2*l+1)=
|
|
& spmt(2,1)*srot(isym)%rotl(-l:l,-l:l,l)
|
|
ENDIF
|
|
C
|
|
RETURN
|
|
END
|
|
|