mirror of
https://github.com/triqs/dft_tools
synced 2025-01-03 10:05:49 +01:00
8bbbe81c7d
* Provided script update_archive.py to convert old h5 archives. * Fixed all tests
263 lines
12 KiB
Python
263 lines
12 KiB
Python
|
|
################################################################################
|
|
#
|
|
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
#
|
|
# Copyright (C) 2011 by M. Aichhorn
|
|
#
|
|
# TRIQS is free software: you can redistribute it and/or modify it under the
|
|
# terms of the GNU General Public License as published by the Free Software
|
|
# Foundation, either version 3 of the License, or (at your option) any later
|
|
# version.
|
|
#
|
|
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
# details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
################################################################################
|
|
|
|
from types import *
|
|
import numpy
|
|
from pytriqs.archive import *
|
|
import pytriqs.utility.mpi as mpi
|
|
import string
|
|
from math import sqrt
|
|
|
|
|
|
def read_fortran_file (filename):
|
|
""" Returns a generator that yields all numbers in the Fortran file as float, one by one"""
|
|
import os.path
|
|
if not(os.path.exists(filename)) : raise IOError, "File %s does not exist."%filename
|
|
for line in open(filename,'r') :
|
|
for x in line.replace('D','E').replace('(',' ').replace(')',' ').replace(',',' ').split() :
|
|
yield string.atof(x)
|
|
|
|
|
|
|
|
class HkConverter:
|
|
"""
|
|
Conversion from general H(k) file to an hdf5 file that can be used as input for the SumK_LDA class.
|
|
"""
|
|
|
|
def __init__(self, hk_file, hdf_file, lda_subgrp = 'lda_input', symmcorr_subgrp = 'lda_symmcorr_input', repacking = False):
|
|
"""
|
|
Init of the class.
|
|
on.
|
|
"""
|
|
|
|
assert type(hk_file)==StringType,"hk_file must be a filename"
|
|
self.hdf_file = hdf_file
|
|
self.lda_file = hk_file
|
|
self.lda_subgrp = lda_subgrp
|
|
self.symmcorr_subgrp = symmcorr_subgrp
|
|
|
|
# Checks if h5 file is there and repacks it if wanted:
|
|
import os.path
|
|
if (os.path.exists(self.hdf_file) and repacking):
|
|
self.__repack()
|
|
|
|
|
|
def convert_dmft_input(self, first_real_part_matrix = True, only_upper_triangle = False, weights_in_file = False):
|
|
"""
|
|
Reads the input files, and stores the data in the HDFfile
|
|
"""
|
|
|
|
# Read and write only on the master node
|
|
if not (mpi.is_master_node()): return
|
|
mpi.report("Reading input from %s..."%self.lda_file)
|
|
|
|
# R is a generator : each R.Next() will return the next number in the file
|
|
R = read_fortran_file(self.lda_file)
|
|
try:
|
|
energy_unit = 1.0 # the energy conversion factor is 1.0, we assume eV in files
|
|
n_k = int(R.next()) # read the number of k points
|
|
k_dep_projection = 0
|
|
SP = 0 # no spin-polarision
|
|
SO = 0 # no spin-orbit
|
|
charge_below = 0.0 # total charge below energy window is set to 0
|
|
density_required = R.next() # density required, for setting the chemical potential
|
|
symm_op = 0 # No symmetry groups for the k-sum
|
|
|
|
# the information on the non-correlated shells is needed for defining dimension of matrices:
|
|
n_shells = int(R.next()) # number of shells considered in the Wanniers
|
|
# corresponds to index R in formulas
|
|
# now read the information about the shells:
|
|
shells = [ [ int(R.next()) for i in range(4) ] for icrsh in range(n_shells) ] # reads iatom, sort, l, dim
|
|
|
|
n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
|
# corresponds to index R in formulas
|
|
# now read the information about the shells:
|
|
corr_shells = [ [ int(R.next()) for i in range(6) ] for icrsh in range(n_corr_shells) ] # reads iatom, sort, l, dim, SO flag, irep
|
|
|
|
self.inequiv_shells(corr_shells) # determine the number of inequivalent correlated shells, has to be known for further reading...
|
|
|
|
use_rotations = 0
|
|
rot_mat = [numpy.identity(corr_shells[icrsh][3],numpy.complex_) for icrsh in xrange(n_corr_shells)]
|
|
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
|
|
|
# Representative representations are read from file
|
|
n_reps = [1 for i in range(self.n_inequiv_corr_shells)]
|
|
dim_reps = [0 for i in range(self.n_inequiv_corr_shells)]
|
|
T = []
|
|
for icrsh in range(self.n_inequiv_corr_shells):
|
|
n_reps[icrsh] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
|
|
dim_reps[icrsh] = [int(R.next()) for i in range(n_reps[icrsh])] # dimensions of the subsets
|
|
|
|
# The transformation matrix:
|
|
# is of dimension 2l+1, it is taken to be standard d (as in Wien2k)
|
|
ll = 2*corr_shells[self.invshellmap[icrsh]][2]+1
|
|
lmax = ll * (corr_shells[self.invshellmap[icrsh]][4] + 1)
|
|
T.append(numpy.zeros([lmax,lmax],numpy.complex_))
|
|
|
|
T[icrsh] = numpy.array([[0.0, 0.0, 1.0, 0.0, 0.0],
|
|
[1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
|
|
[-1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
|
|
[0.0, 1.0/sqrt(2.0), 0.0, -1.0/sqrt(2.0), 0.0],
|
|
[0.0, 1.0/sqrt(2.0), 0.0, 1.0/sqrt(2.0), 0.0]])
|
|
|
|
# Spin blocks to be read:
|
|
n_spin_blocs = SP + 1 - SO # number of spins to read for Norbs and Ham, NOT Projectors
|
|
|
|
# define the number of n_orbitals for all k points: it is the number of total bands and independent of k!
|
|
n_orb = sum([ shells[ish][3] for ish in range(n_shells) ])
|
|
n_orbitals = numpy.ones([n_k,n_spin_blocs],numpy.int) * n_orb
|
|
|
|
# Initialise the projectors:
|
|
proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max(numpy.array(corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)
|
|
|
|
# Read the projectors from the file:
|
|
for ik in xrange(n_k):
|
|
for icrsh in range(n_corr_shells):
|
|
for isp in range(n_spin_blocs):
|
|
|
|
# calculate the offset:
|
|
offset = 0
|
|
no = 0
|
|
for i in range(n_shells):
|
|
if (no==0):
|
|
if ((shells[i][0]==corr_shells[icrsh][0]) and (shells[i][1]==corr_shells[icrsh][1])):
|
|
no = corr_shells[icrsh][3]
|
|
else:
|
|
offset += shells[i][3]
|
|
|
|
proj_mat[ik,isp,icrsh,0:no,offset:offset+no] = numpy.identity(no)
|
|
|
|
# now define the arrays for weights and hopping ...
|
|
bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
|
|
hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
|
|
|
|
if (weights_in_file):
|
|
# weights in the file
|
|
for ik in xrange(n_k) : bz_weights[ik] = R.next()
|
|
|
|
# if the sum over spins is in the weights, take it out again!!
|
|
sm = sum(bz_weights)
|
|
bz_weights[:] /= sm
|
|
|
|
# Grab the H
|
|
for isp in range(n_spin_blocs):
|
|
for ik in xrange(n_k) :
|
|
no = n_orbitals[ik,isp]
|
|
# IF TRUE, FIRST READ ALL REAL COMPONENTS OF ONE kPOINT, OTHERWISE TUPLE OF real,im
|
|
if (first_real_part_matrix):
|
|
|
|
for i in xrange(no):
|
|
if (only_upper_triangle):
|
|
istart = i
|
|
else:
|
|
istart = 0
|
|
for j in xrange(istart,no):
|
|
hopping[ik,isp,i,j] = R.next()
|
|
|
|
for i in xrange(no):
|
|
if (only_upper_triangle):
|
|
istart = i
|
|
else:
|
|
istart = 0
|
|
for j in xrange(istart,no):
|
|
hopping[ik,isp,i,j] += R.next() * 1j
|
|
if ((only_upper_triangle)and(i!=j)): hopping[ik,isp,j,i] = hopping[ik,isp,i,j].conjugate()
|
|
|
|
else:
|
|
|
|
for i in xrange(no):
|
|
if (only_upper_triangle):
|
|
istart = i
|
|
else:
|
|
istart = 0
|
|
for j in xrange(istart,no):
|
|
hopping[ik,isp,i,j] = R.next()
|
|
hopping[ik,isp,i,j] += R.next() * 1j
|
|
|
|
if ((only_upper_triangle)and(i!=j)): hopping[ik,isp,j,i] = hopping[ik,isp,i,j].conjugate()
|
|
# keep some things that we need for reading parproj:
|
|
things_to_set = ['n_shells','shells','n_corr_shells','corr_shells','n_spin_blocs','n_orbitals','n_k','SO','SP','energy_unit']
|
|
for it in things_to_set: setattr(self,it,locals()[it])
|
|
except StopIteration : # a more explicit error if the file is corrupted.
|
|
raise "HK Converter : reading file lda_file failed!"
|
|
|
|
R.close()
|
|
|
|
# Save to the HDF5:
|
|
ar = HDFArchive(self.hdf_file,'a')
|
|
if not (self.lda_subgrp in ar): ar.create_group(self.lda_subgrp)
|
|
things_to_save = ['energy_unit','n_k','k_dep_projection','SP','SO','charge_below','density_required',
|
|
'symm_op','n_shells','shells','n_corr_shells','corr_shells','use_rotations','rot_mat',
|
|
'rot_mat_time_inv','n_reps','dim_reps','T','n_orbitals','proj_mat','bz_weights','hopping']
|
|
for it in things_to_save: ar[self.lda_subgrp][it] = locals()[it]
|
|
del ar
|
|
|
|
|
|
|
|
|
|
def __repack(self):
|
|
"""Calls the h5repack routine, in order to reduce the file size of the hdf5 archive.
|
|
Should only be used BEFORE the first invokation of HDFArchive in the program, otherwise
|
|
the hdf5 linking is broken!!!"""
|
|
|
|
import subprocess
|
|
|
|
if not (mpi.is_master_node()): return
|
|
|
|
mpi.report("Repacking the file %s"%self.hdf_file)
|
|
|
|
retcode = subprocess.call(["h5repack","-i%s"%self.hdf_file, "-otemphgfrt.h5"])
|
|
if (retcode!=0):
|
|
mpi.report("h5repack failed!")
|
|
else:
|
|
subprocess.call(["mv","-f","temphgfrt.h5","%s"%self.hdf_file])
|
|
|
|
|
|
|
|
def inequiv_shells(self,lst):
|
|
"""
|
|
The number of inequivalent shells is calculated from lst, and a mapping is given as
|
|
map(i_corr_shells) = i_inequiv_corr_shells
|
|
invmap(i_inequiv_corr_shells) = i_corr_shells
|
|
in order to put the Self energies to all equivalent shells, and for extracting Gloc
|
|
"""
|
|
|
|
tmp = []
|
|
self.shellmap = [0 for i in range(len(lst))]
|
|
self.invshellmap = [0]
|
|
self.n_inequiv_corr_shells = 1
|
|
tmp.append( lst[0][1:3] )
|
|
|
|
if (len(lst)>1):
|
|
for i in range(len(lst)-1):
|
|
|
|
fnd = False
|
|
for j in range(self.n_inequiv_corr_shells):
|
|
if (tmp[j]==lst[i+1][1:3]):
|
|
fnd = True
|
|
self.shellmap[i+1] = j
|
|
if (fnd==False):
|
|
self.shellmap[i+1] = self.n_inequiv_corr_shells
|
|
self.n_inequiv_corr_shells += 1
|
|
tmp.append( lst[i+1][1:3] )
|
|
self.invshellmap.append(i+1)
|