3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 19:53:45 +01:00
dft_tools/triqs/arrays/python/numpy_extractor.cpp
Olivier Parcollet c7a1a25846 Fix bug in building regular type from python
- the flag is really enforce_copy and should force a copy
- for a view : it is false, no change
- for a regular type : it is true, and now this will enforce the
  copy in the call of numpy. numpy does it for us.
- The problematic case was when we construct a regular type
  from a complicated view in python, which is an array
  but is not C contiguous.
  (hence the PyArray_Check was false, and the C_Contiguous flag was not set)
  Now it is fine, since we ask numpy to systematically copy the data for us
  and build a C contigous array.
  --> the constructor from python does not support custom memory layout
  because numpy only support C and Fortran

Conflicts:

	triqs/arrays/impl/indexmap_storage_pair.hpp
2014-09-18 15:01:17 +02:00

124 lines
5.6 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#include "../impl/common.hpp"
#include "../impl/traits.hpp"
#include "../impl/flags.hpp"
#include "../../utility/mini_vector.hpp"
#include "./numpy_extractor.hpp"
#ifdef TRIQS_WITH_PYTHON_SUPPORT
namespace triqs { namespace arrays { namespace numpy_interface {
PyObject *numpy_extractor_impl(PyObject *X, bool enforce_copy, std::string type_name, int elementsType, int rank,
size_t *lengths, std::ptrdiff_t *strides, size_t size_of_ValueType) {
PyObject * numpy_obj;
if (X==NULL) TRIQS_RUNTIME_ERROR<<"numpy interface : the python object is NULL !";
if (_import_array()!=0) TRIQS_RUNTIME_ERROR <<"Internal Error in importing numpy";
static const char * error_msg = " A deep copy of the object would be necessary while views are supposed to guarantee to present a *view* of the python data.\n";
if (!enforce_copy) {
if (!PyArray_Check(X)) throw copy_exception () << error_msg<<" Indeed the object was not even an array !\n";
if ( elementsType != PyArray_TYPE((PyArrayObject*)X))
throw copy_exception () << error_msg<<" The deep copy is caused by a type mismatch of the elements. Expected "<< type_name<< " and found XXX \n";
PyArrayObject *arr = (PyArrayObject *)X;
#ifdef TRIQS_NUMPY_VERSION_LT_17
if ( arr->nd != rank) throw copy_exception () << error_msg<<" Rank mismatch . numpy array is of rank "<< arr->nd << "while you ask for rank "<< rank<<". \n";
#else
if ( PyArray_NDIM(arr) != rank) throw copy_exception () << error_msg<<" Rank mismatch . numpy array is of rank "<< PyArray_NDIM(arr) << "while you ask for rank "<< rank<<". \n";
#endif
numpy_obj = X; Py_INCREF(X);
}
else {
// From X, we ask the numpy library to make a numpy, and of the correct type.
// This handles automatically the cases where :
// - we have list, or list of list/tuple
// - the numpy type is not the one we want.
// - adjust the dimension if needed
// If X is an array :
// - if Order is same, don't change it
// - else impose it (may provoque a copy).
// if X is not array :
// - Order = FortranOrder or SameOrder - > Fortran order otherwise C
//bool ForceCast = false;// Unless FORCECAST is present in flags, this call will generate an error if the data type cannot be safely obtained from the object.
int flags = 0; //(ForceCast ? NPY_FORCECAST : 0) ;// do NOT force a copy | (make_copy ? NPY_ENSURECOPY : 0);
//if (!(PyArray_Check(X) ))
//flags |= ( IndexMapType::traversal_order == indexmaps::mem_layout::c_order(rank) ? NPY_C_CONTIGUOUS : NPY_F_CONTIGUOUS); //impose mem order
#ifdef TRIQS_NUMPY_VERSION_LT_17
flags |= (NPY_C_CONTIGUOUS); //impose mem order
flags |= (NPY_ENSURECOPY);
#else
flags |= (NPY_ARRAY_C_CONTIGUOUS); // impose mem order
flags |= (NPY_ARRAY_ENSURECOPY);
#endif
numpy_obj= PyArray_FromAny(X,PyArray_DescrFromType(elementsType), rank,rank, flags , NULL );
// do several checks
if (!numpy_obj) {// The convertion of X to a numpy has failed !
if (PyErr_Occurred()) {
//PyErr_Print();
PyErr_Clear();
}
TRIQS_RUNTIME_ERROR<<"numpy interface : the python object is not convertible to a numpy. ";
}
assert (PyArray_Check(numpy_obj)); assert((numpy_obj->ob_refcnt==1) || ((numpy_obj ==X)));
PyArrayObject *arr_obj;
arr_obj = (PyArrayObject *)numpy_obj;
try {
#ifdef TRIQS_NUMPY_VERSION_LT_17
if (arr_obj->nd!=rank) TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : dimensions do not match";
if (arr_obj->descr->type_num != elementsType)
TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : incorrect type of element :" <<arr_obj->descr->type_num <<" vs "<<elementsType;
#else
if ( PyArray_NDIM(arr_obj) !=rank) TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : dimensions do not match";
if ( PyArray_DESCR(arr_obj)->type_num != elementsType)
TRIQS_RUNTIME_ERROR<<"numpy interface : internal error : incorrect type of element :" <<PyArray_DESCR(arr_obj)->type_num <<" vs "<<elementsType;
#endif
}
catch(...) { Py_DECREF(numpy_obj); throw;} // make sure that in case of problem, the reference counting of python is still ok...
}
// extract strides and lengths
PyArrayObject *arr_obj;
arr_obj = (PyArrayObject *)numpy_obj;
#ifdef TRIQS_NUMPY_VERSION_LT_17
const size_t dim =arr_obj->nd; // we know that dim == rank
for (size_t i=0; i< dim ; ++i) {
lengths[i] = size_t(arr_obj-> dimensions[i]);
strides[i] = std::ptrdiff_t(arr_obj-> strides[i])/ size_of_ValueType;
}
#else
const size_t dim = PyArray_NDIM(arr_obj); // we know that dim == rank
for (size_t i=0; i< dim ; ++i) {
lengths[i] = size_t( PyArray_DIMS(arr_obj)[i]);
strides[i] = std::ptrdiff_t( PyArray_STRIDES(arr_obj)[i])/ size_of_ValueType;
}
#endif
return numpy_obj;
}
}}}
#endif