mirror of
https://github.com/triqs/dft_tools
synced 2024-12-27 06:43:40 +01:00
f6fa63c9b3
- _s automatically done for scalar_valued. - add simple reinterpretation of gf scalar to matrix view to easy h5 saving to plot in python
165 lines
6.6 KiB
C++
165 lines
6.6 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#ifndef TRIQS_GF_MATSUBARA_TIME_H
|
|
#define TRIQS_GF_MATSUBARA_TIME_H
|
|
#include "./tools.hpp"
|
|
#include "./gf.hpp"
|
|
#include "./local/tail.hpp"
|
|
#include "./domains/matsubara.hpp"
|
|
#include "./meshes/linear.hpp"
|
|
|
|
namespace triqs { namespace gfs {
|
|
|
|
struct imtime {};
|
|
|
|
namespace gfs_implementation {
|
|
|
|
// mesh type and its factories
|
|
template<typename Opt> struct mesh<imtime,Opt> {
|
|
typedef linear_mesh<matsubara_domain<false>> type;
|
|
typedef typename type::domain_t domain_t;
|
|
static type make(double beta, statistic_enum S, size_t n_time_slices, mesh_kind mk=half_bins) {
|
|
return type(domain_t(beta,S), 0, beta, n_time_slices, mk);
|
|
}
|
|
};
|
|
|
|
// singularity
|
|
template<typename Opt> struct singularity<imtime,matrix_valued,Opt> { typedef local::tail type;};
|
|
template<typename Opt> struct singularity<imtime,scalar_valued,Opt> { typedef local::tail type;};
|
|
|
|
// h5 name
|
|
template<typename Opt> struct h5_name<imtime,matrix_valued,Opt> { static std::string invoke(){ return "ImTime";}};
|
|
|
|
/// --------------------------- data access ---------------------------------
|
|
|
|
template<typename Opt> struct data_proxy<imtime,matrix_valued,Opt> : data_proxy_array<double,3> {};
|
|
template<typename Opt> struct data_proxy<imtime,scalar_valued,Opt> : data_proxy_array<double,1> {};
|
|
|
|
/// --------------------------- closest mesh point on the grid ---------------------------------
|
|
|
|
template<typename Opt, typename Target>
|
|
struct get_closest_point <imtime,Target,Opt> {
|
|
// index_t is size_t
|
|
template<typename G, typename T>
|
|
static size_t invoke(G const * g, closest_pt_wrap<T> const & p) {
|
|
double x = (g->mesh().kind()==half_bins ? double(p.value) : double(p.value)+ 0.5*g->mesh().delta());
|
|
size_t n = std::floor(x/g->mesh().delta());
|
|
return n;
|
|
}
|
|
};
|
|
|
|
|
|
/// --------------------------- evaluator ---------------------------------
|
|
|
|
// NOT TESTED
|
|
// TEST THE SPPED when q_view are incorporated...
|
|
// true evaluator with interpolation ...
|
|
template<typename G, typename ReturnType>
|
|
ReturnType evaluator_imtime_impl (G const * g, double tau, ReturnType && _tmp) {
|
|
// interpolate between n and n+1, with weight
|
|
double beta = g->mesh().domain().beta;
|
|
int p = std::floor(tau/beta);
|
|
tau -= p*beta;
|
|
double a = tau/g->mesh().delta();
|
|
long n = std::floor(a);
|
|
double w = a-n;
|
|
assert(n < g->mesh().size()-1);
|
|
auto _ = arrays::ellipsis();
|
|
if ((g->mesh().domain().statistic == Fermion) && (p%2==1))
|
|
_tmp = - w*g->data()(n, _) - (1-w)*g->data()(n+1, _);
|
|
else
|
|
_tmp = w*g->data()(n, _) + (1-w)*g->data()(n+1, _);
|
|
//else { // Speed test to redo when incoparated qview in main branch
|
|
// _tmp(0,0) = w*g->data()(n, 0,0) + (1-w)*g->data()(n+1, 0,0);
|
|
// _tmp(0,1) = w*g->data()(n, 0,1) + (1-w)*g->data()(n+1, 0,1);
|
|
// _tmp(1,0) = w*g->data()(n, 1,0) + (1-w)*g->data()(n+1, 1,0);
|
|
// _tmp(1,1) = w*g->data()(n, 1,1) + (1-w)*g->data()(n+1, 1,1);
|
|
// }
|
|
return _tmp;
|
|
}
|
|
|
|
template<typename Opt>
|
|
struct evaluator<imtime,matrix_valued,Opt> {
|
|
private:
|
|
mutable arrays::matrix<double> _tmp;
|
|
public :
|
|
static constexpr int arity = 1;
|
|
evaluator() = default;
|
|
evaluator(size_t n1, size_t n2) : _tmp(n1,n2) {} // WHAT happen in resize ??
|
|
|
|
template<typename G>
|
|
arrays::matrix<double> const & operator()(G const * g, double tau) const { return evaluator_imtime_impl(g, tau, _tmp);}
|
|
|
|
template<typename G>
|
|
typename G::singularity_t const & operator()(G const * g,freq_infty const &) const {return g->singularity();}
|
|
};
|
|
|
|
template<typename Opt>
|
|
struct evaluator<imtime,scalar_valued,Opt> {
|
|
public :
|
|
static constexpr int arity = 1;
|
|
|
|
template<typename G> double operator()(G const * g, double tau) const { return evaluator_imtime_impl(g, tau, 0.0);}
|
|
|
|
template<typename G>
|
|
typename G::singularity_t const & operator()(G const * g,freq_infty const &) const {return g->singularity();}
|
|
};
|
|
|
|
// ------------------------------- Factories --------------------------------------------------
|
|
|
|
// matrix_valued
|
|
template<typename Opt> struct factories<imtime,matrix_valued,Opt> {
|
|
typedef gf<imtime,matrix_valued,Opt> gf_t;
|
|
template<typename MeshType>
|
|
static gf_t make_gf(MeshType && m, tqa::mini_vector<size_t,2> shape, local::tail_view const & t) {
|
|
typename gf_t::data_non_view_t A(shape.front_append(m.size())); A() =0;
|
|
//return gf_t ( m, std::move(A), t, nothing() ) ;
|
|
return gf_t (std::forward<MeshType>(m), std::move(A), t, nothing(), evaluator<imtime,matrix_valued,Opt>(shape[0],shape[1]) ) ;
|
|
}
|
|
static gf_t make_gf(double beta, statistic_enum S, tqa::mini_vector<size_t,2> shape, size_t Nmax=1025, mesh_kind mk= half_bins) {
|
|
return make_gf(mesh<imtime,Opt>::make(beta,S,Nmax,mk), shape, local::tail(shape));
|
|
}
|
|
static gf_t make_gf(double beta, statistic_enum S, tqa::mini_vector<size_t,2> shape, size_t Nmax, mesh_kind mk, local::tail_view const & t) {
|
|
return make_gf(mesh<imtime,Opt>::make(beta,S,Nmax,mk), shape, t);
|
|
}
|
|
};
|
|
|
|
// scalar_valued
|
|
template<typename Opt> struct factories<imtime,scalar_valued,Opt> {
|
|
typedef gf<imtime,scalar_valued,Opt> gf_t;
|
|
template<typename MeshType>
|
|
static gf_t make_gf(MeshType && m, local::tail_view const & t) {
|
|
typename gf_t::data_non_view_t A(m.size()); A() =0;
|
|
return gf_t (std::forward<MeshType>(m), std::move(A), t, nothing());
|
|
}
|
|
static gf_t make_gf(double beta, statistic_enum S, size_t Nmax=1025, mesh_kind mk= half_bins) {
|
|
return make_gf(mesh<imtime,Opt>::make(beta,S,Nmax,mk), local::tail(tqa::mini_vector<size_t,2> (1,1)));
|
|
}
|
|
static gf_t make_gf(double beta, statistic_enum S, size_t Nmax, mesh_kind mk, local::tail_view const & t) {
|
|
return make_gf(mesh<imtime,Opt>::make(beta,S,Nmax,mk), t);
|
|
}
|
|
};
|
|
} // gfs_implementation.
|
|
|
|
}}
|
|
#endif
|
|
|