3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-27 23:03:51 +01:00
dft_tools/doc/reference/c++/gf/fourier.rst
Olivier Parcollet bdac3e159c work on doc for gf, and details.
- little details : code cleaning, clang formatting,  along
with documentation writing for c++ gf.
- separated the mesh in small class for better doc.
- work on documentation : reorganize specialisation, ...
2013-12-30 22:32:16 +01:00

117 lines
3.9 KiB
ReStructuredText

.. highlight:: c
Fourier transforms
###################
The Fourier transforms from real and imaginary frequencies to times, and inverse, are currently implemented,
along with the analogous transformation from the Legendre expansion to imaginary time and frequencies.
Synopsis
=========
**Synopsis** ::
auto fourier (gf<imfreq,Target,Opt> const &)
auto fourier (gf_view<imfreq,Target,Opt> const &)
auto fourier (gf_const_view<imfreq,Target,Opt> const &)
auto inverse_fourier (gf<imfreq,Target,Opt> const &)
auto inverse_fourier (gf_view<imfreq,Target,Opt> const &)
auto inverse_fourier (gf_const_view<imfreq,Target,Opt> const &)
gf<imfreq, Target, Opt> make_gf_from_fourier(gf<imtime, Target, Opt> const&);
gf<imfreq, Target, Opt> make_gf_from_fourier(gf_view<imtime, Target, Opt> const&);
gf<imfreq, Target, Opt> make_gf_from_fourier(gf_const_view<imtime, Target, Opt> const&);
gf<imtime, Target, Opt> make_gf_from_inverse_fourier(gf<imfreq, Target, Opt> const&);
gf<imtime, Target, Opt> make_gf_from_inverse_fourier(gf_view<imfreq, Target, Opt> const&);
gf<imtime, Target, Opt> make_gf_from_inverse_fourier(gf_const_view<imfreq, Target, Opt> const&);
**fourier, inverse_fourier**
The fourier/inverse_fourier functions do **not** perform the Fourier transformation,
but returns a small lazy object (basically saying "Fourier Transform of XXX"),
which is then used in an assignment of a *view* of a gf.
The reason is the following: when putting e.g. a Fourier transform of a function in time, say gt,
into a Green function in frequencies, say gw, we want to say something like::
gw = fourier(gt); // ??? (1)
However, if the fourier function performs the transformation, how could it know the details
of the mesh of gw ? That information is not available when calling *fourier*.
Since *fourier* returns a small lazy object, the library can then rewrite (1) internally into something like ::
call_the_fourier_implementation(gt, gw);
where all the information about the mesh of gw is now available to the implementation.
Moreover, since fourier(gt) does not possess a domain (for the same reason), (1)
makes no sense : RHS of gf assignment requires a domain (cf concepts).
We therefore use *a view* as LHS::
gw() = fourier(gt); // correct usage.
**make_gf_from_fourier, make_gf_from_inverse_fourier**
In the case where we want to create a *new* container from the fourier transform of gt,
we can use the function make_gf_from_fourier, in which choice is explicitly made to generate a new gf with the same number of points in the mesh.
(Cf example below).
DOC TO BE FINISHED.
Example
=========
.. compileblock::
#include <triqs/gfs.hpp>
using namespace triqs::gfs;
int main() {
double beta =1, a=1;
int N=10000;
auto gw = gf<imfreq> {{beta, Fermion, N}, {1,1}};
auto gt = gf<imtime> {{beta, Fermion, N}, {1,1}};
triqs::clef::placeholder<0> om_;
gw (om_) << 1/(om_-a);
// fills a full *view* of gt with the contents of the FFT
// NB : the mesh of gt *must* have the same size as the mesh of gw.
gt() = inverse_fourier(gw);
// make a new fresh gf, with the same size mesh, from the FFT of gt
auto gw2 = make_gf_from_fourier(gt);
}
Convention
===========
For real time/frequency:
.. math:: \tilde G(\omega)=\int_{-\infty}^\infty dt G(t)e^{i\omega t}
.. math:: G(t)=\int_{-\infty}^\infty \frac{d\omega}{2\pi} \tilde G(\omega)e^{-i\omega t}
For Matsubara (imaginary) time/frequency:
.. math:: \tilde G(i\omega_n)=\int_{0}^\beta d\tau G(t)e^{i\omega_n \tau}
.. math:: G(\tau)=\sum_{n=-\infty}^\infty \frac{1}{\beta} \tilde G(i\omega_n)e^{-i\omega_n \tau}
The :math:`\omega_n`'s are :math:`\frac{(2n+1)\pi}{\beta}` for fermions, :math:`\frac{2n\pi}{\beta}` for bosons (as :math:`G(\tau+\beta)=-G(\tau)` for fermions, :math:`G(\tau)` for bosons).
.. toctree::
:maxdepth: 1
fourier_impl_notes