3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 19:53:45 +01:00
dft_tools/triqs/arrays/h5/simple_read_write.hpp
Olivier Parcollet 4af1afbdaf hdf5 : clean up
- For users : only change is :
   H5::H5File in apps. to be replaced by triqs::h5::file, same API.

- using only the C API because :
   - it is cleaner, better documented, more examples.
   - it is the native hdf5 interface.
   - simplify the installation e.g. on mac. Indeed, hdf5 is
     usually installed without C++ interface, which is optional.
     E.g. EPD et al., brew by default.
     Also the infamous mpi+ hdf5_cpp bug, for which we have no clean solution.

- clean the notion of parent of a group. Not needed, better iterate function in C LT API.
- modified doc : no need for C++ bindings any more.
- modified cmake to avoid requiring CPP bindings.
2014-06-22 13:57:47 +02:00

141 lines
6.5 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011-2014 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#pragma once
#include <triqs/arrays/array.hpp>
#include <triqs/arrays/vector.hpp>
#include <triqs/h5.hpp>
#include "../cache.hpp"
namespace triqs {
namespace arrays {
namespace h5_impl {
struct array_stride_info {
int R;
size_t const* lengths;
long const* strides;
template<typename A> explicit array_stride_info(A && a) {
R = std::c14::decay_t<A>::rank;
lengths = a.indexmap().domain().lengths().ptr();
strides = a.indexmap().strides().ptr();
}
};
/******************** resize or check the size ****************************************************/
template <typename A> ENABLE_IF(is_amv_value_class<A>) resize_or_check(A& a, mini_vector<size_t, A::rank> const& dimsf) {
a.resize(indexmaps::cuboid::domain_t<A::rank>(dimsf));
}
template <typename A> ENABLE_IF(is_amv_view_class<A>) resize_or_check(A const& a, mini_vector<size_t, A::rank> const& dimsf) {
if (a.indexmap().domain().lengths() != dimsf)
TRIQS_RUNTIME_ERROR << "Dimension error : the view can not be resized : "
<< "\n in file : " << dimsf.to_string()
<< "\n in view : " << a.indexmap().domain().lengths().to_string();
}
/*********************************** WRITE array ****************************************************************/
template <typename T> void write_array_impl(h5::group g, std::string const& name, const T* start, array_stride_info info);
template <typename A> void write_array(h5::group g, std::string const& name, A const& a, bool C_reorder = true) {
if (C_reorder) {
auto b = make_const_cache(a).view();
write_array_impl(g, name, b.data_start(), array_stride_info{b});
} else
write_array_impl(g, name, a.data_start(), array_stride_info{a});
}
// overload : special treatment for arrays of strings (one dimension only).
void write_array(h5::group g, std::string const& name, vector_const_view<std::string> V);
void write_array(h5::group g, std::string const& name, array_const_view<std::string, 1> V);
/*********************************** READ array ****************************************************************/
std::vector<size_t> get_array_lengths(int R, h5::group g, std::string const& name, bool is_complex);
template <typename T> void read_array_impl(h5::group g, std::string const& name, T* start, array_stride_info info);
template <typename A> void read_array(h5::group g, std::string const& name, A&& a, bool C_reorder = true) {
// mini_vector... : useless on 4.9 and clang, there seems to be a bug (??) on 4.8.
resize_or_check(a, mini_vector<size_t, std::c14::decay_t<A>::rank> (get_array_lengths(a.rank, g, name, triqs::is_complex<typename std::c14::decay_t<A>::value_type>::value)));
if (C_reorder) {
{
auto b = make_cache(a);
read_array_impl(g, name, b.view().data_start(), array_stride_info{b.view()});
}
} else
read_array_impl(g, name, a.data_start(), array_stride_info{a});
}
// overload : special treatment for arrays of strings (one dimension only).
void read_array(h5::group g, std::string const& name, arrays::vector<std::string>& V);
void read_array(h5::group f, std::string const& name, arrays::array<std::string, 1>& V);
} // namespace h5_impl
// a trait to detect if A::value_type exists and is a scalar or a string
// used to exclude array<array<..>>
template <typename A, typename Enable = void> struct has_scalar_or_string_value_type : std::false_type {};
template <typename A>
struct has_scalar_or_string_value_type<
A, decltype(nop(std::declval<
typename A::value_type>()))> : std::integral_constant<bool, is_scalar<typename A::value_type>::value ||
std::is_base_of<std::string,
typename A::value_type>::value> {};
// get_triqs_hdf5_data_scheme
template <typename ArrayType>
TYPE_ENABLE_IFC(std::string, is_amv_value_or_view_class<ArrayType>::value) get_triqs_hdf5_data_scheme(ArrayType const&) {
using triqs::get_triqs_hdf5_data_scheme; // for the basic types, not found by ADL
return "array<" + get_triqs_hdf5_data_scheme(typename ArrayType::value_type()) + "," + std::to_string(ArrayType::rank) + ">";
}
/*
* Read an array or a view from an hdf5 file
* ArrayType The type of the array/matrix/vector, etc..
* g The h5 group
* name The name of the hdf5 array in the file/group where the stack will be stored
* A The array to be stored
* The HDF5 exceptions will be caught and rethrown as TRIQS_RUNTIME_ERROR (with a full stackstrace, cf triqs doc).
*/
template <typename ArrayType>
ENABLE_IFC(is_amv_value_or_view_class<ArrayType>::value&& has_scalar_or_string_value_type<ArrayType>::value)
h5_read(h5::group g, std::string const& name, ArrayType& A) {
h5_impl::read_array(g, name, A);
}
/*
* Write an array or a view into an hdf5 file
* ArrayType The type of the array/matrix/vector, etc..
* g The h5 group
* name The name of the hdf5 array in the file/group where the stack will be stored
* A The array to be stored
* The HDF5 exceptions will be caught and rethrown as TRIQS_RUNTIME_ERROR (with a full stackstrace, cf triqs doc).
*/
template <typename ArrayType>
ENABLE_IFC(is_amv_value_or_view_class<ArrayType>::value&& has_scalar_or_string_value_type<ArrayType>::value)
h5_write(h5::group g, std::string const& name, ArrayType const& A) {
if (A.is_empty()) TRIQS_RUNTIME_ERROR << " Can not save an empty array into hdf5";
h5_impl::write_array(g, name, array_const_view<typename ArrayType::value_type, ArrayType::rank>(A));
}
}}