mirror of
https://github.com/triqs/dft_tools
synced 2025-01-01 00:55:48 +01:00
216 lines
6.6 KiB
Python
216 lines
6.6 KiB
Python
################################################################################
|
|
#
|
|
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
#
|
|
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
|
|
#
|
|
# TRIQS is free software: you can redistribute it and/or modify it under the
|
|
# terms of the GNU General Public License as published by the Free Software
|
|
# Foundation, either version 3 of the License, or (at your option) any later
|
|
# version.
|
|
#
|
|
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
# details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
################################################################################
|
|
|
|
r""" """
|
|
|
|
from descriptor_base import *
|
|
from gf import MeshImFreq, MeshReFreq
|
|
|
|
#######################################
|
|
|
|
class OneFermionInTime(Base):
|
|
def __init__ (self, l =0):
|
|
Base.__init__(self, L=l)
|
|
|
|
def __call__(self,G):
|
|
L = self.L
|
|
if G.mesh.TypeGF not in [GF_Type.Imaginary_Time]:
|
|
raise TypeError, "This initializer is only correct in frequency"
|
|
|
|
Id = numpy.identity(G.N1)
|
|
G.tail.zero()
|
|
G.tail[1][:,:] = 1*Id
|
|
G.tail[2][:,:] = L*Id
|
|
G.tail[3][:,:] = L*L*Id
|
|
G.tail.mask.fill(3)
|
|
|
|
fact = -1/(1+exp(-L*G.beta))
|
|
Function(lambda t: fact* exp(-L*t) *Id, None)(G)
|
|
return G
|
|
|
|
##################################################
|
|
|
|
def _SemiCircularDOS(half_bandwidth):
|
|
"""
|
|
Semi_Circular DOS function
|
|
Input: the 1/2 bandwidth
|
|
Returns: a function omega-> dos(omega)
|
|
"""
|
|
from math import sqrt,pi
|
|
larg = half_bandwidth
|
|
def semi(x):
|
|
if (abs(x)<larg): return sqrt( 1 - (x/larg)**2 )*2/pi/larg
|
|
else: return 0.0
|
|
return semi
|
|
|
|
def semi(x):
|
|
return _SemiCircularDOS(x)
|
|
|
|
##################################################
|
|
|
|
class SemiCircular (Base):
|
|
r"""Hilbert transform of a semicircular density of states, i.e.
|
|
|
|
.. math::
|
|
g(z) = \int \frac{A(\omega)}{z-\omega} d\omega
|
|
|
|
where :math:`A(\omega) = \theta( D - |\omega|) 2 \sqrt{ D^2 - \omega^2}/(\pi D^2)`.
|
|
|
|
(Only works in combination with frequency Green's functions.)
|
|
"""
|
|
def __init__ (self, half_bandwidth):
|
|
""":param half_bandwidth: :math:`D`, the half bandwidth of the
|
|
semicircular density of states"""
|
|
Base.__init__(self, half_bandwidth=half_bandwidth)
|
|
|
|
def __str__(self): return "SemiCircular(%s)"%self.half_bandwidth
|
|
|
|
def __call__(self,G):
|
|
D= self.half_bandwidth
|
|
Id = numpy.identity(G.N1,numpy.complex_)
|
|
if type(G.mesh) == MeshImFreq:
|
|
f = lambda om: (om - 1j*copysign(1,om.imag)*sqrt(abs(om)**2 + D*D))/D/D*2*Id
|
|
elif type(G.mesh) == MeshReFreq:
|
|
def f(om_):
|
|
om = om_.real
|
|
if (om > -D) and (om < D):
|
|
return (2.0/D**2) * (om - 1j* sqrt(D**2 - om**2))
|
|
else:
|
|
return (2.0/D**2) * (om - copysign(1,om) * sqrt(om**2 - D**2))
|
|
else:
|
|
raise TypeError, "This initializer is only correct in frequency"
|
|
|
|
# Let's create a new tail
|
|
Id = numpy.identity(G.N1)
|
|
G.tail.zero()
|
|
G.tail[1][:,:] = 1.0*Id
|
|
G.tail[3][:,:] = D**2/4.0*Id
|
|
G.tail[5][:,:] = D**4/8.0*Id
|
|
G.tail.mask.fill(6)
|
|
|
|
Function(f,None)(G)
|
|
return G
|
|
|
|
##################################################
|
|
|
|
class Wilson (Base):
|
|
r"""The Hilbert transform of a flat density of states, with cut-off
|
|
|
|
.. math::
|
|
g(z) = \int \frac{A(\omega)}{z-\omega} d\omega
|
|
|
|
where :math:`A(\omega) = \theta( D^2 - \omega^2)/(2D)`.
|
|
|
|
(Only works in combination with frequency Green's functions.)
|
|
"""
|
|
def __init__ (self, half_bandwidth):
|
|
""":param half_bandwidth: :math:`D`, the half bandwidth """
|
|
Base.__init__(self, half_bandwidth=half_bandwidth)
|
|
|
|
def __str__(self): return "Wilson(%s)"%half_bandwidth
|
|
|
|
def __call__(self,G):
|
|
|
|
D = self.half_bandwidth
|
|
Id = numpy.identity(G.N1,numpy.complex_)
|
|
|
|
if type(G.mesh) == MeshImFreq:
|
|
f = lambda om: (-1/(2.0*D)) * numpy.log((om-D)/(om+D)) * Id
|
|
elif type(G.mesh) == MeshReFreq:
|
|
def f(om):
|
|
if (om.real > -D) and (om.real < D):
|
|
return -numpy.log(abs(om-D)/abs(om+D))*Id/(2*D) - 1j*pi*Id/(2*D)
|
|
else:
|
|
return -numpy.log(abs(om-D)/abs(om+D))*Id/(2*D)
|
|
else:
|
|
raise TypeError, "This initializer is only correct in frequency"
|
|
|
|
# Let's create a new tail
|
|
Id = numpy.identity(G.N1)
|
|
G.tail.zero()
|
|
G.tail[1][:,:] = 1.0*Id
|
|
G.tail[3][:,:] = D**2/3.0*Id
|
|
G.tail[5][:,:] = D**4/5.0*Id
|
|
G.tail.mask.fill(6)
|
|
|
|
Function(f,None)(G)
|
|
return G
|
|
|
|
|
|
##################################################
|
|
|
|
class Fourier (Base):
|
|
r"""
|
|
The Fourier transform as a lazy expression
|
|
"""
|
|
def __init__ (self, G):
|
|
""":param G: :math:`G`, the function to be transformed. Must in the time domain"""
|
|
Base.__init__(self, G = G)
|
|
|
|
def __str__(self): return "Fourier(%s)"%self.G.name
|
|
|
|
def __call__(self,G2):
|
|
G2.set_from_fourier(self.G)
|
|
return G2
|
|
|
|
class InverseFourier (Base):
|
|
r"""
|
|
The Inverse Fourier transform as a lazy expression
|
|
"""
|
|
def __init__ (self, G):
|
|
""":param G: :math:`G`, the function to be transformed. Must in the frequency domain"""
|
|
Base.__init__(self, G = G)
|
|
|
|
def __str__(self): return "InverseFourier(%s)"%self.G.name
|
|
|
|
def __call__(self,G2):
|
|
G2.set_from_inverse_fourier(self.G)
|
|
return G2
|
|
|
|
class LegendreToMatsubara (Base):
|
|
r"""
|
|
The transformation from Legendre to Matsubara as a lazy expression
|
|
"""
|
|
def __init__ (self, G):
|
|
""":param G: :math:`G`, the function to be transformed. Must in the Legendre domain"""
|
|
Base.__init__(self, G = G)
|
|
|
|
def __str__(self): return "LegendreToMatsubara(%s)"%self.G.name
|
|
|
|
def __call__(self,G2):
|
|
G2.set_from_legendre(self.G)
|
|
return G2
|
|
|
|
class MatsubaraToLegendre (Base):
|
|
r"""
|
|
The transformation from Legendre to Matsubara as a lazy expression
|
|
"""
|
|
def __init__ (self, G):
|
|
""":param G: :math:`G`, the function to be transformed. Must in the Matsubara domain"""
|
|
Base.__init__(self, G = G)
|
|
|
|
def __str__(self): return "MatsubaraToLegendre(%s)"%self.G.name
|
|
|
|
def __call__(self,G2):
|
|
G2.set_from_imfreq(self.G)
|
|
return G2
|
|
|