mirror of
https://github.com/triqs/dft_tools
synced 2024-11-19 12:32:29 +01:00
852 lines
43 KiB
Python
852 lines
43 KiB
Python
################################################################################
|
|
#
|
|
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
#
|
|
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
|
#
|
|
# TRIQS is free software: you can redistribute it and/or modify it under the
|
|
# terms of the GNU General Public License as published by the Free Software
|
|
# Foundation, either version 3 of the License, or (at your option) any later
|
|
# version.
|
|
#
|
|
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
# details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
################################################################################
|
|
import sys
|
|
from types import *
|
|
import numpy
|
|
from pytriqs.gf.local import *
|
|
import pytriqs.utility.mpi as mpi
|
|
from symmetry import *
|
|
from sumk_dft import SumkDFT
|
|
from scipy.integrate import *
|
|
from scipy.interpolate import *
|
|
|
|
class SumkDFTTools(SumkDFT):
|
|
"""
|
|
Extends the SumkDFT class with some tools for analysing the data.
|
|
"""
|
|
|
|
|
|
def __init__(self, hdf_file, h_field = 0.0, use_dft_blocks = False, dft_data = 'dft_input', symmcorr_data = 'dft_symmcorr_input',
|
|
parproj_data = 'dft_parproj_input', symmpar_data = 'dft_symmpar_input', bands_data = 'dft_bands_input',
|
|
transp_data = 'dft_transp_input', misc_data = 'dft_misc_input'):
|
|
"""
|
|
Initialisation of the class. Parameters are exactly as for SumKDFT.
|
|
"""
|
|
|
|
SumkDFT.__init__(self, hdf_file=hdf_file, h_field=h_field, use_dft_blocks=use_dft_blocks,
|
|
dft_data=dft_data, symmcorr_data=symmcorr_data, parproj_data=parproj_data,
|
|
symmpar_data=symmpar_data, bands_data=bands_data, transp_data=transp_data,
|
|
misc_data=misc_data)
|
|
|
|
|
|
def dos_wannier_basis(self, mu=None, broadening=None, mesh=None, with_Sigma=True, with_dc=True, save_to_file=True):
|
|
"""
|
|
Calculates the density of states in the basis of the Wannier functions.
|
|
|
|
Parameters
|
|
----------
|
|
mu : double, optional
|
|
Chemical potential, overrides the one stored in the hdf5 archive.
|
|
broadening : double, optional
|
|
Lorentzian broadening of the spectra. If not given, standard value of lattice_gf is used.
|
|
mesh : real frequency MeshType, optional
|
|
Omega mesh for the real-frequency Green's function. Given as parameter to lattice_gf.
|
|
with_Sigma : boolean, optional
|
|
If True, the self energy is used for the calculation. If false, the DOS is calculated without self energy.
|
|
with_dc : boolean, optional
|
|
If True the double counting correction is used.
|
|
save_to_file : boolean, optional
|
|
If True, text files with the calculated data will be created.
|
|
|
|
Returns
|
|
-------
|
|
DOS : Dict of numpy arrays
|
|
Contains the full density of states.
|
|
DOSproj : Dict of numpy arrays
|
|
DOS projected to atoms.
|
|
DOSproj_orb : Dict of numpy arrays
|
|
DOS projected to atoms and resolved into orbital contributions.
|
|
"""
|
|
|
|
if (mesh is None) and (not with_Sigma):
|
|
raise ValueError, "lattice_gf: Give the mesh=(om_min,om_max,n_points) for the lattice GfReFreq."
|
|
if mesh is None:
|
|
om_mesh = [x.real for x in self.Sigma_imp_w[0].mesh]
|
|
om_min = om_mesh[0]
|
|
om_max = om_mesh[-1]
|
|
n_om = len(om_mesh)
|
|
mesh = (om_min,om_max,n_om)
|
|
else:
|
|
om_min,om_max,n_om = mesh
|
|
om_mesh = numpy.linspace(om_min, om_max, n_om)
|
|
|
|
G_loc = []
|
|
for icrsh in range(self.n_corr_shells):
|
|
spn = self.spin_block_names[self.corr_shells[icrsh]['SO']]
|
|
glist = [ GfReFreq(indices = inner, window = (om_min,om_max), n_points = n_om) for block,inner in self.gf_struct_sumk[icrsh]]
|
|
G_loc.append(BlockGf(name_list = spn, block_list = glist, make_copies=False))
|
|
for icrsh in range(self.n_corr_shells): G_loc[icrsh].zero()
|
|
|
|
DOS = { sp: numpy.zeros([n_om],numpy.float_) for sp in self.spin_block_names[self.SO] }
|
|
DOSproj = [ {} for ish in range(self.n_inequiv_shells) ]
|
|
DOSproj_orb = [ {} for ish in range(self.n_inequiv_shells) ]
|
|
for ish in range(self.n_inequiv_shells):
|
|
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]:
|
|
dim = self.corr_shells[self.inequiv_to_corr[ish]]['dim']
|
|
DOSproj[ish][sp] = numpy.zeros([n_om],numpy.float_)
|
|
DOSproj_orb[ish][sp] = numpy.zeros([n_om,dim,dim],numpy.float_)
|
|
|
|
ikarray = numpy.array(range(self.n_k))
|
|
for ik in mpi.slice_array(ikarray):
|
|
|
|
G_latt_w = self.lattice_gf(ik=ik,mu=mu,iw_or_w="w",broadening=broadening,mesh=mesh,with_Sigma=with_Sigma,with_dc=with_dc)
|
|
G_latt_w *= self.bz_weights[ik]
|
|
|
|
# Non-projected DOS
|
|
for iom in range(n_om):
|
|
for bname,gf in G_latt_w:
|
|
DOS[bname][iom] -= gf.data[iom,:,:].imag.trace()/numpy.pi
|
|
|
|
# Projected DOS:
|
|
for icrsh in range(self.n_corr_shells):
|
|
tmp = G_loc[icrsh].copy()
|
|
for bname,gf in tmp: tmp[bname] << self.downfold(ik,icrsh,bname,G_latt_w[bname],gf) # downfolding G
|
|
G_loc[icrsh] += tmp
|
|
|
|
# Collect data from mpi:
|
|
for bname in DOS:
|
|
DOS[bname] = mpi.all_reduce(mpi.world, DOS[bname], lambda x,y : x+y)
|
|
for icrsh in range(self.n_corr_shells):
|
|
G_loc[icrsh] << mpi.all_reduce(mpi.world, G_loc[icrsh], lambda x,y : x+y)
|
|
mpi.barrier()
|
|
|
|
# Symmetrize and rotate to local coord. system if needed:
|
|
if self.symm_op != 0: G_loc = self.symmcorr.symmetrize(G_loc)
|
|
if self.use_rotations:
|
|
for icrsh in range(self.n_corr_shells):
|
|
for bname,gf in G_loc[icrsh]: G_loc[icrsh][bname] << self.rotloc(icrsh,gf,direction='toLocal')
|
|
|
|
# G_loc can now also be used to look at orbitally-resolved quantities
|
|
for ish in range(self.n_inequiv_shells):
|
|
for bname,gf in G_loc[self.inequiv_to_corr[ish]]: # loop over spins
|
|
for iom in range(n_om): DOSproj[ish][bname][iom] -= gf.data[iom,:,:].imag.trace()/numpy.pi
|
|
DOSproj_orb[ish][bname][:,:,:] -= gf.data[:,:,:].imag/numpy.pi
|
|
|
|
# Write to files
|
|
if save_to_file and mpi.is_master_node():
|
|
for sp in self.spin_block_names[self.SO]:
|
|
f = open('DOS_wann_%s.dat'%sp, 'w')
|
|
for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOS[sp][iom]))
|
|
f.close()
|
|
|
|
# Partial
|
|
for ish in range(self.n_inequiv_shells):
|
|
f = open('DOS_wann_%s_proj%s.dat'%(sp,ish),'w')
|
|
for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOSproj[ish][sp][iom]))
|
|
f.close()
|
|
|
|
# Orbitally-resolved
|
|
for i in range(self.corr_shells[self.inequiv_to_corr[ish]]['dim']):
|
|
for j in range(i,self.corr_shells[self.inequiv_to_corr[ish]]['dim']):
|
|
f = open('DOS_wann_'+sp+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat','w')
|
|
for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOSproj_orb[ish][sp][iom,i,j]))
|
|
f.close()
|
|
|
|
return DOS, DOSproj, DOSproj_orb
|
|
|
|
|
|
def dos_parproj_basis(self, mu=None, broadening=None, mesh=None, with_Sigma=True, with_dc=True, save_to_file=True):
|
|
"""
|
|
Calculates the orbitally-resolved DOS.
|
|
Different to dos_Wannier_basis is that here we calculate projections also to non-Wannier projectors, in the
|
|
flavour of Wien2k QTL calculatuions.
|
|
|
|
Parameters
|
|
----------
|
|
mu : double, optional
|
|
Chemical potential, overrides the one stored in the hdf5 archive.
|
|
broadening : double, optional
|
|
Lorentzian broadening of the spectra. If not given, standard value of lattice_gf is used.
|
|
mesh : real frequency MeshType, optional
|
|
Omega mesh for the real-frequency Green's function. Given as parameter to lattice_gf.
|
|
with_Sigma : boolean, optional
|
|
If True, the self energy is used for the calculation. If false, the DOS is calculated without self energy.
|
|
with_dc : boolean, optional
|
|
If True the double counting correction is used.
|
|
save_to_file : boolean, optional
|
|
If True, text files with the calculated data will be created.
|
|
|
|
Returns
|
|
-------
|
|
DOS : Dict of numpy arrays
|
|
Contains the full density of states.
|
|
DOSproj : Dict of numpy arrays
|
|
DOS projected to atoms.
|
|
DOSproj_orb : Dict of numpy arrays
|
|
DOS projected to atoms and resolved into orbital contributions.
|
|
"""
|
|
|
|
|
|
things_to_read = ['n_parproj','proj_mat_all','rot_mat_all','rot_mat_all_time_inv']
|
|
value_read = self.read_input_from_hdf(subgrp=self.parproj_data,things_to_read = things_to_read)
|
|
if not value_read: return value_read
|
|
if self.symm_op: self.symmpar = Symmetry(self.hdf_file,subgroup=self.symmpar_data)
|
|
|
|
if (mesh is None) and (not with_Sigma):
|
|
raise ValueError, "lattice_gf: Give the mesh=(om_min,om_max,n_points) for the lattice GfReFreq."
|
|
if mesh is None:
|
|
om_mesh = [x.real for x in self.Sigma_imp_w[0].mesh]
|
|
om_min = om_mesh[0]
|
|
om_max = om_mesh[-1]
|
|
n_om = len(om_mesh)
|
|
mesh = (om_min,om_max,n_om)
|
|
else:
|
|
om_min,om_max,n_om = mesh
|
|
om_mesh = numpy.linspace(om_min, om_max, n_om)
|
|
|
|
G_loc = []
|
|
spn = self.spin_block_names[self.SO]
|
|
gf_struct_parproj = [ [ (sp, range(self.shells[ish]['dim'])) for sp in spn ]
|
|
for ish in range(self.n_shells) ]
|
|
for ish in range(self.n_shells):
|
|
glist = [ GfReFreq(indices = inner, window = (om_min,om_max), n_points = n_om) for block,inner in gf_struct_parproj[ish] ]
|
|
G_loc.append(BlockGf(name_list = spn, block_list = glist, make_copies=False))
|
|
for ish in range(self.n_shells): G_loc[ish].zero()
|
|
|
|
DOS = { sp: numpy.zeros([n_om],numpy.float_) for sp in self.spin_block_names[self.SO] }
|
|
DOSproj = [ {} for ish in range(self.n_shells) ]
|
|
DOSproj_orb = [ {} for ish in range(self.n_shells) ]
|
|
for ish in range(self.n_shells):
|
|
for sp in self.spin_block_names[self.SO]:
|
|
dim = self.shells[ish]['dim']
|
|
DOSproj[ish][sp] = numpy.zeros([n_om],numpy.float_)
|
|
DOSproj_orb[ish][sp] = numpy.zeros([n_om,dim,dim],numpy.float_)
|
|
|
|
ikarray = numpy.array(range(self.n_k))
|
|
for ik in mpi.slice_array(ikarray):
|
|
|
|
G_latt_w = self.lattice_gf(ik=ik,mu=mu,iw_or_w="w",broadening=broadening,mesh=mesh,with_Sigma=with_Sigma,with_dc=with_dc)
|
|
G_latt_w *= self.bz_weights[ik]
|
|
|
|
# Non-projected DOS
|
|
for iom in range(n_om):
|
|
for bname,gf in G_latt_w:
|
|
DOS[bname][iom] -= gf.data[iom,:,:].imag.trace()/numpy.pi
|
|
|
|
# Projected DOS:
|
|
for ish in range(self.n_shells):
|
|
tmp = G_loc[ish].copy()
|
|
for ir in range(self.n_parproj[ish]):
|
|
for bname,gf in tmp: tmp[bname] << self.downfold(ik,ish,bname,G_latt_w[bname],gf,shells='all',ir=ir)
|
|
G_loc[ish] += tmp
|
|
|
|
# Collect data from mpi:
|
|
for bname in DOS:
|
|
DOS[bname] = mpi.all_reduce(mpi.world, DOS[bname], lambda x,y : x+y)
|
|
for ish in range(self.n_shells):
|
|
G_loc[ish] << mpi.all_reduce(mpi.world, G_loc[ish], lambda x,y : x+y)
|
|
mpi.barrier()
|
|
|
|
# Symmetrize and rotate to local coord. system if needed:
|
|
if self.symm_op != 0: G_loc = self.symmpar.symmetrize(G_loc)
|
|
if self.use_rotations:
|
|
for ish in range(self.n_shells):
|
|
for bname,gf in G_loc[ish]: G_loc[ish][bname] << self.rotloc(ish,gf,direction='toLocal',shells='all')
|
|
|
|
# G_loc can now also be used to look at orbitally-resolved quantities
|
|
for ish in range(self.n_shells):
|
|
for bname,gf in G_loc[ish]:
|
|
for iom in range(n_om): DOSproj[ish][bname][iom] -= gf.data[iom,:,:].imag.trace()/numpy.pi
|
|
DOSproj_orb[ish][bname][:,:,:] -= gf.data[:,:,:].imag/numpy.pi
|
|
|
|
# Write to files
|
|
if save_to_file and mpi.is_master_node():
|
|
for sp in self.spin_block_names[self.SO]:
|
|
f = open('DOS_parproj_%s.dat'%sp, 'w')
|
|
for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOS[sp][iom]))
|
|
f.close()
|
|
|
|
# Partial
|
|
for ish in range(self.n_shells):
|
|
f = open('DOS_parproj_%s_proj%s.dat'%(sp,ish),'w')
|
|
for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOSproj[ish][sp][iom]))
|
|
f.close()
|
|
|
|
# Orbitally-resolved
|
|
for i in range(self.shells[ish]['dim']):
|
|
for j in range(i,self.shells[ish]['dim']):
|
|
f = open('DOS_parproj_'+sp+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat','w')
|
|
for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOSproj_orb[ish][sp][iom,i,j]))
|
|
f.close()
|
|
|
|
return DOS, DOSproj, DOSproj_orb
|
|
|
|
|
|
def spaghettis(self,broadening=None,plot_shift=0.0,plot_range=None,ishell=None,mu=None,save_to_file='Akw_'):
|
|
"""
|
|
Calculates the correlated band structure using a real-frequency self energy.
|
|
|
|
Parameters
|
|
----------
|
|
mu : double, optional
|
|
Chemical potential, overrides the one stored in the hdf5 archive.
|
|
broadening : double, optional
|
|
Lorentzian broadening of the spectra. If not given, standard value of lattice_gf is used.
|
|
plot_shift : double, optional
|
|
Offset for each A(k,w) for stacked plotting of spectra.
|
|
plot_range : list of double, optional
|
|
Sets the energy window for plotting to (plot_range[0],plot_range[1]). If not provided, the energy mesh of the self energy is used.
|
|
ishell : integer, optional
|
|
Contains the index of the shell on which the spectral function is projected. If ishell=None, the total spectrum without projection is calculated.
|
|
save_to_file : string, optional
|
|
Filename where the spectra are stored.
|
|
|
|
Returns
|
|
-------
|
|
Akw : Dict of numpy arrays
|
|
Data as it is also written to the files.
|
|
"""
|
|
|
|
|
|
assert hasattr(self,"Sigma_imp_w"), "spaghettis: Set Sigma_imp_w first."
|
|
things_to_read = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_all']
|
|
value_read = self.read_input_from_hdf(subgrp=self.bands_data,things_to_read=things_to_read)
|
|
if not value_read: return value_read
|
|
things_to_read = ['rot_mat_all','rot_mat_all_time_inv']
|
|
value_read = self.read_input_from_hdf(subgrp=self.parproj_data,things_to_read = things_to_read)
|
|
if not value_read: return value_read
|
|
|
|
if mu is None: mu = self.chemical_potential
|
|
spn = self.spin_block_names[self.SO]
|
|
mesh = [x.real for x in self.Sigma_imp_w[0].mesh]
|
|
n_om = len(mesh)
|
|
|
|
if plot_range is None:
|
|
om_minplot = mesh[0] - 0.001
|
|
om_maxplot = mesh[n_om-1] + 0.001
|
|
else:
|
|
om_minplot = plot_range[0]
|
|
om_maxplot = plot_range[1]
|
|
|
|
if ishell is None:
|
|
Akw = { sp: numpy.zeros([self.n_k,n_om],numpy.float_) for sp in spn }
|
|
else:
|
|
Akw = { sp: numpy.zeros([self.shells[ishell]['dim'],self.n_k,n_om],numpy.float_) for sp in spn }
|
|
|
|
if not ishell is None:
|
|
gf_struct_parproj = [ (sp, range(self.shells[ishell]['dim'])) for sp in spn ]
|
|
G_loc = BlockGf(name_block_generator = [ (block,GfReFreq(indices = inner, mesh = self.Sigma_imp_w[0].mesh))
|
|
for block,inner in gf_struct_parproj ], make_copies = False)
|
|
G_loc.zero()
|
|
|
|
ikarray = numpy.array(range(self.n_k))
|
|
for ik in mpi.slice_array(ikarray):
|
|
|
|
G_latt_w = self.lattice_gf(ik=ik,mu=mu,iw_or_w="w",broadening=broadening)
|
|
|
|
if ishell is None:
|
|
# Non-projected A(k,w)
|
|
for iom in range(n_om):
|
|
if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot):
|
|
for bname,gf in G_latt_w: Akw[bname][ik,iom] += gf.data[iom,:,:].imag.trace()/(-1.0*numpy.pi)
|
|
Akw[bname][ik,iom] += ik*plot_shift # shift Akw for plotting stacked k-resolved eps(k) curves
|
|
|
|
else: # ishell not None
|
|
# Projected A(k,w):
|
|
G_loc.zero()
|
|
tmp = G_loc.copy()
|
|
for ir in range(self.n_parproj[ishell]):
|
|
for bname,gf in tmp: tmp[bname] << self.downfold(ik,ishell,bname,G_latt_w[bname],gf,shells='all',ir=ir)
|
|
G_loc += tmp
|
|
|
|
# Rotate to local frame
|
|
if self.use_rotations:
|
|
for bname,gf in G_loc: G_loc[bname] << self.rotloc(ishell,gf,direction='toLocal',shells='all')
|
|
|
|
for iom in range(n_om):
|
|
if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot):
|
|
for ish in range(self.shells[ishell]['dim']):
|
|
for sp in spn:
|
|
Akw[sp][ish,ik,iom] = G_loc[sp].data[iom,ish,ish].imag/(-1.0*numpy.pi)
|
|
|
|
if save_to_file and mpi.is_master_node():
|
|
if ishell is None:
|
|
for sp in spn: # loop over GF blocs:
|
|
f = open(save_to_file+sp+'.dat','w') # Open file for storage:
|
|
for ik in range(self.n_k):
|
|
for iom in range(n_om):
|
|
if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot):
|
|
if plot_shift > 0.0001:
|
|
f.write('%s %s\n'%(mesh[iom],Akw[sp][ik,iom]))
|
|
else:
|
|
f.write('%s %s %s\n'%(ik,mesh[iom],Akw[sp][ik,iom]))
|
|
f.write('\n')
|
|
f.close()
|
|
|
|
else: # ishell is not None
|
|
for sp in spn:
|
|
for ish in range(self.shells[ishell]['dim']):
|
|
f = open(save_to_file+sp+'_proj'+str(ish)+'.dat','w') # Open file for storage:
|
|
for ik in range(self.n_k):
|
|
for iom in range(n_om):
|
|
if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot):
|
|
if plot_shift > 0.0001:
|
|
f.write('%s %s\n'%(mesh[iom],Akw[sp][ish,ik,iom]))
|
|
else:
|
|
f.write('%s %s %s\n'%(ik,mesh[iom],Akw[sp][ish,ik,iom]))
|
|
f.write('\n')
|
|
f.close()
|
|
|
|
return Akw
|
|
|
|
def partial_charges(self,beta=40,mu=None,with_Sigma=True,with_dc=True):
|
|
"""
|
|
Calculates the orbitally-resolved density matrix for all the orbitals considered in the input, consistent with
|
|
the definition of Wien2k. Hence, (possibly non-orthonormal) projectors have to be provided in the partial projectors subgroup of
|
|
the hdf5 archive.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
with_Sigma : boolean, optional
|
|
If True, the self energy is used for the calculation. If false, partial charges are calculated without self-energy correction.
|
|
beta : double, optional
|
|
In case the self-energy correction is not used, the inverse temperature where the calculation should be done has to be given here.
|
|
mu : double, optional
|
|
Chemical potential, overrides the one stored in the hdf5 archive.
|
|
with_dc : boolean, optional
|
|
If True the double counting correction is used.
|
|
|
|
Returns
|
|
-------
|
|
dens_mat : list of numpy array
|
|
A list of density matrices projected to all shells provided in the input.
|
|
"""
|
|
|
|
things_to_read = ['dens_mat_below','n_parproj','proj_mat_all','rot_mat_all','rot_mat_all_time_inv']
|
|
value_read = self.read_input_from_hdf(subgrp=self.parproj_data,things_to_read = things_to_read)
|
|
if not value_read: return value_read
|
|
if self.symm_op: self.symmpar = Symmetry(self.hdf_file,subgroup=self.symmpar_data)
|
|
|
|
spn = self.spin_block_names[self.SO]
|
|
ntoi = self.spin_names_to_ind[self.SO]
|
|
# Density matrix in the window
|
|
self.dens_mat_window = [ [ numpy.zeros([self.shells[ish]['dim'],self.shells[ish]['dim']],numpy.complex_)
|
|
for ish in range(self.n_shells) ]
|
|
for isp in range(len(spn)) ]
|
|
# Set up G_loc
|
|
gf_struct_parproj = [ [ (sp, range(self.shells[ish]['dim'])) for sp in spn ]
|
|
for ish in range(self.n_shells) ]
|
|
if with_Sigma:
|
|
G_loc = [ BlockGf(name_block_generator = [ (block,GfImFreq(indices = inner, mesh = self.Sigma_imp_iw[0].mesh))
|
|
for block,inner in gf_struct_parproj[ish] ], make_copies = False)
|
|
for ish in range(self.n_shells)]
|
|
beta = self.Sigma_imp_iw[0].mesh.beta
|
|
else:
|
|
G_loc = [ BlockGf(name_block_generator = [ (block,GfImFreq(indices = inner, beta = beta))
|
|
for block,inner in gf_struct_parproj[ish] ], make_copies = False)
|
|
for ish in range(self.n_shells)]
|
|
for ish in range(self.n_shells): G_loc[ish].zero()
|
|
|
|
ikarray = numpy.array(range(self.n_k))
|
|
for ik in mpi.slice_array(ikarray):
|
|
|
|
G_latt_iw = self.lattice_gf(ik=ik,mu=mu,iw_or_w="iw",beta=beta,with_Sigma=with_Sigma,with_dc=with_dc)
|
|
G_latt_iw *= self.bz_weights[ik]
|
|
for ish in range(self.n_shells):
|
|
tmp = G_loc[ish].copy()
|
|
for ir in range(self.n_parproj[ish]):
|
|
for bname,gf in tmp: tmp[bname] << self.downfold(ik,ish,bname,G_latt_iw[bname],gf,shells='all',ir=ir)
|
|
G_loc[ish] += tmp
|
|
|
|
# Collect data from mpi:
|
|
for ish in range(self.n_shells):
|
|
G_loc[ish] << mpi.all_reduce(mpi.world, G_loc[ish], lambda x,y : x+y)
|
|
mpi.barrier()
|
|
|
|
# Symmetrize and rotate to local coord. system if needed:
|
|
if self.symm_op != 0: G_loc = self.symmpar.symmetrize(G_loc)
|
|
if self.use_rotations:
|
|
for ish in range(self.n_shells):
|
|
for bname,gf in G_loc[ish]: G_loc[ish][bname] << self.rotloc(ish,gf,direction='toLocal',shells='all')
|
|
|
|
for ish in range(self.n_shells):
|
|
isp = 0
|
|
for bname,gf in G_loc[ish]:
|
|
self.dens_mat_window[isp][ish] = G_loc[ish].density()[bname]
|
|
isp += 1
|
|
|
|
# Add density matrices to get the total:
|
|
dens_mat = [ [ self.dens_mat_below[ntoi[spn[isp]]][ish] + self.dens_mat_window[isp][ish]
|
|
for ish in range(self.n_shells) ]
|
|
for isp in range(len(spn)) ]
|
|
|
|
return dens_mat
|
|
|
|
|
|
def print_hamiltonian(self):
|
|
"""
|
|
Prints the Kohn-Sham Hamiltonian to the text files hamup.dat and hamdn.dat (no spin orbit-coupling), or to ham.dat (with spin-orbit coupling).
|
|
"""
|
|
|
|
if self.SP == 1 and self.SO == 0:
|
|
f1 = open('hamup.dat','w')
|
|
f2 = open('hamdn.dat','w')
|
|
for ik in range(self.n_k):
|
|
for i in range(self.n_orbitals[ik,0]):
|
|
f1.write('%s %s\n'%(ik,self.hopping[ik,0,i,i].real))
|
|
for i in range(self.n_orbitals[ik,1]):
|
|
f2.write('%s %s\n'%(ik,self.hopping[ik,1,i,i].real))
|
|
f1.write('\n')
|
|
f2.write('\n')
|
|
f1.close()
|
|
f2.close()
|
|
else:
|
|
f = open('ham.dat','w')
|
|
for ik in range(self.n_k):
|
|
for i in range(self.n_orbitals[ik,0]):
|
|
f.write('%s %s\n'%(ik,self.hopping[ik,0,i,i].real))
|
|
f.write('\n')
|
|
f.close()
|
|
|
|
|
|
# ----------------- transport -----------------------
|
|
|
|
def read_transport_input_from_hdf(self):
|
|
r"""
|
|
Reads the data for transport calculations from the hdf5 archive.
|
|
"""
|
|
thingstoread = ['band_window_optics','velocities_k']
|
|
self.read_input_from_hdf(subgrp=self.transp_data,things_to_read = thingstoread)
|
|
thingstoread = ['band_window','lattice_angles','lattice_constants','lattice_type','n_symmetries','rot_symmetries']
|
|
self.read_input_from_hdf(subgrp=self.misc_data,things_to_read = thingstoread)
|
|
|
|
|
|
def cellvolume(self, lattice_type, lattice_constants, latticeangle):
|
|
r"""
|
|
Determines the conventional und primitive unit cell volumes.
|
|
|
|
Parameters
|
|
----------
|
|
lattice_type : string
|
|
Lattice type according to the Wien2k convention (P, F, B, R, H, CXY, CYZ, CXZ).
|
|
lattice_constants : list of double
|
|
Lattice constants (a, b, c).
|
|
lattice angles : list of double
|
|
Lattice angles (:math:`\alpha, \beta, \gamma`).
|
|
|
|
Returns
|
|
-------
|
|
vol_c : double
|
|
Conventional unit cell volume.
|
|
vol_p : double
|
|
Primitive unit cell volume.
|
|
"""
|
|
|
|
a = lattice_constants[0]
|
|
b = lattice_constants[1]
|
|
c = lattice_constants[2]
|
|
c_al = numpy.cos(latticeangle[0])
|
|
c_be = numpy.cos(latticeangle[1])
|
|
c_ga = numpy.cos(latticeangle[2])
|
|
vol_c = a * b * c * numpy.sqrt(1 + 2 * c_al * c_be * c_ga - c_al ** 2 - c_be ** 2 - c_ga ** 2)
|
|
|
|
det = {"P":1, "F":4, "B":2, "R":3, "H":1, "CXY":2, "CYZ":2, "CXZ":2}
|
|
vol_p = vol_c / det[lattice_type]
|
|
|
|
return vol_c, vol_p
|
|
|
|
|
|
def transport_distribution(self, beta, directions=['xx'], energy_window=None, Om_mesh=[0.0], with_Sigma=False, n_om=None, broadening=0.0):
|
|
r"""
|
|
Calculates the transport distribution
|
|
|
|
.. math::
|
|
\Gamma_{\alpha\beta}\left(\omega+\Omega/2, \omega-\Omega/2\right) = \frac{1}{V} \sum_k Tr\left(v_{k,\alpha}A_{k}(\omega+\Omega/2)v_{k,\beta}A_{k}\left(\omega-\Omega/2\right)\right)
|
|
|
|
in the direction :math:`\alpha\beta`. The velocities :math:`v_{k}` are read from the transport subgroup of the hdf5 archive.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
beta : double
|
|
Inverse temperature :math:`\beta`.
|
|
directions : list of double, optional
|
|
:math:`\alpha\beta` e.g.: ['xx','yy','zz','xy','xz','yz'].
|
|
energy_window : list of double, optional
|
|
Specifies the upper and lower limit of the frequency integration for :math:`\Omega=0.0`. The window is automatically enlarged by the largest :math:`\Omega` value,
|
|
hence the integration is performed in the interval [energy_window[0]-max(Om_mesh), energy_window[1]+max(Om_mesh)].
|
|
Om_mesh : list of double, optional
|
|
:math:`\Omega` frequency mesh of the optical conductivity. For the conductivity and the Seebeck coefficient :math:`\Omega=0.0` has to be
|
|
part of the mesh. In the current version Om_mesh is repined to the mesh provided by the self-energy! The actual mesh is printed on the screen and stored as
|
|
member Om_mesh.
|
|
with_Sigma : boolean, optional
|
|
Determines whether the calculation is performed with or without self energy. If this parameter is set to False the self energy is set to zero (i.e. the DFT band
|
|
structure :math:`A(k,\omega)` is used). Note: For with_Sigma=False it is necessary to specify the parameters energy_window, n_om and broadening.
|
|
n_om : integer, optional
|
|
Number of equidistant frequency points in the interval [energy_window[0]-max(Om_mesh), energy_window[1]+max(Om_mesh)]. This parameters is only used if
|
|
with_Sigma = False.
|
|
broadening : double, optional
|
|
Lorentzian broadening. It is necessary to specify the boradening if with_Sigma = False, otherwise this parameter can be set to 0.0.
|
|
"""
|
|
|
|
# Check if wien converter was called and read transport subgroup form hdf file
|
|
if mpi.is_master_node():
|
|
ar = HDFArchive(self.hdf_file, 'r')
|
|
if not (self.transp_data in ar): raise IOError, "transport_distribution: No %s subgroup in hdf file found! Call convert_transp_input first." %self.transp_data
|
|
self.read_transport_input_from_hdf()
|
|
|
|
if mpi.is_master_node():
|
|
# k-dependent-projections.
|
|
assert self.k_dep_projection == 1, "transport_distribution: k dependent projection is not implemented!"
|
|
# positive Om_mesh
|
|
assert all(Om >= 0.0 for Om in Om_mesh), "transport_distribution: Om_mesh should not contain negative values!"
|
|
|
|
# Check if energy_window is sufficiently large and correct
|
|
|
|
if (energy_window[0] >= energy_window[1] or energy_window[0] >= 0 or energy_window[1] <= 0):
|
|
assert 0, "transport_distribution: energy_window wrong!"
|
|
|
|
if (abs(self.fermi_dis(energy_window[0],beta)*self.fermi_dis(-energy_window[0],beta)) > 1e-5
|
|
or abs(self.fermi_dis(energy_window[1],beta)*self.fermi_dis(-energy_window[1],beta)) > 1e-5):
|
|
mpi.report("\n####################################################################")
|
|
mpi.report("transport_distribution: WARNING - energy window might be too narrow!")
|
|
mpi.report("####################################################################\n")
|
|
|
|
n_inequiv_spin_blocks = self.SP + 1 - self.SO # up and down are equivalent if SP = 0
|
|
self.directions = directions
|
|
dir_to_int = {'x':0, 'y':1, 'z':2}
|
|
|
|
# calculate A(k,w)
|
|
#######################################
|
|
|
|
# Define mesh for Green's function and in the specified energy window
|
|
if (with_Sigma == True):
|
|
self.omega = numpy.array([round(x.real,12) for x in self.Sigma_imp_w[0].mesh])
|
|
mesh = None
|
|
mu = self.chemical_potential
|
|
n_om = len(self.omega)
|
|
mpi.report("Using omega mesh provided by Sigma!")
|
|
|
|
if energy_window is not None:
|
|
# Find according window in Sigma mesh
|
|
ioffset = numpy.sum(self.omega < energy_window[0]-max(Om_mesh))
|
|
self.omega = self.omega[numpy.logical_and(self.omega >= energy_window[0]-max(Om_mesh), self.omega <= energy_window[1]+max(Om_mesh))]
|
|
n_om = len(self.omega)
|
|
|
|
# Truncate Sigma to given omega window
|
|
# In the future there should be an option in gf to manipulate the mesh (e.g. truncate) directly.
|
|
# For now we stick with this:
|
|
for icrsh in range(self.n_corr_shells):
|
|
Sigma_save = self.Sigma_imp_w[icrsh].copy()
|
|
spn = self.spin_block_names[self.corr_shells[icrsh]['SO']]
|
|
glist = lambda : [ GfReFreq(indices = inner, window=(self.omega[0], self.omega[-1]),n_points=n_om) for block, inner in self.gf_struct_sumk[icrsh]]
|
|
self.Sigma_imp_w[icrsh] = BlockGf(name_list = spn, block_list = glist(),make_copies=False)
|
|
for i,g in self.Sigma_imp_w[icrsh]:
|
|
for iL in g.indices:
|
|
for iR in g.indices:
|
|
for iom in xrange(n_om):
|
|
g.data[iom,iL,iR] = Sigma_save[i].data[ioffset+iom,iL,iR]
|
|
else:
|
|
assert n_om is not None, "transport_distribution: Number of omega points (n_om) needed to calculate transport distribution!"
|
|
assert energy_window is not None, "transport_distribution: Energy window needed to calculate transport distribution!"
|
|
assert broadening != 0.0 and broadening is not None, "transport_distribution: Broadening necessary to calculate transport distribution!"
|
|
self.omega = numpy.linspace(energy_window[0]-max(Om_mesh),energy_window[1]+max(Om_mesh),n_om)
|
|
mesh = [energy_window[0]-max(Om_mesh), energy_window[1]+max(Om_mesh), n_om]
|
|
mu = 0.0
|
|
|
|
# Define mesh for optic conductivity
|
|
d_omega = round(numpy.abs(self.omega[0] - self.omega[1]), 12)
|
|
iOm_mesh = numpy.array([round((Om / d_omega),0) for Om in Om_mesh])
|
|
self.Om_mesh = iOm_mesh * d_omega
|
|
|
|
if mpi.is_master_node():
|
|
print "Chemical potential: ", mu
|
|
print "Using n_om = %s points in the energy_window [%s,%s]"%(n_om, self.omega[0], self.omega[-1]),
|
|
print "where the omega vector is:"
|
|
print self.omega
|
|
print "Calculation requested for Omega mesh: ", numpy.array(Om_mesh)
|
|
print "Omega mesh automatically repined to: ", self.Om_mesh
|
|
|
|
self.Gamma_w = {direction: numpy.zeros((len(self.Om_mesh), n_om), dtype=numpy.float_) for direction in self.directions}
|
|
|
|
# Sum over all k-points
|
|
ikarray = numpy.array(range(self.n_k))
|
|
for ik in mpi.slice_array(ikarray):
|
|
# Calculate G_w for ik and initialize A_kw
|
|
G_w = self.lattice_gf(ik, mu, iw_or_w="w", beta=beta, broadening=broadening, mesh=mesh, with_Sigma=with_Sigma)
|
|
A_kw = [numpy.zeros((self.n_orbitals[ik][isp], self.n_orbitals[ik][isp], n_om), dtype=numpy.complex_)
|
|
for isp in range(n_inequiv_spin_blocks)]
|
|
|
|
for isp in range(n_inequiv_spin_blocks):
|
|
# copy data from G_w (swapaxes is used to have omega in the 3rd dimension)
|
|
A_kw[isp] = copy.deepcopy(G_w[self.spin_block_names[self.SO][isp]].data.swapaxes(0,1).swapaxes(1,2));
|
|
# calculate A(k,w) for each frequency
|
|
for iw in xrange(n_om):
|
|
A_kw[isp][:,:,iw] = -1.0/(2.0*numpy.pi*1j)*(A_kw[isp][:,:,iw]-numpy.conjugate(numpy.transpose(A_kw[isp][:,:,iw])))
|
|
|
|
b_min = max(self.band_window[isp][ik, 0], self.band_window_optics[isp][ik, 0])
|
|
b_max = min(self.band_window[isp][ik, 1], self.band_window_optics[isp][ik, 1])
|
|
A_i = slice(b_min - self.band_window[isp][ik, 0], b_max - self.band_window[isp][ik, 0] + 1)
|
|
v_i = slice(b_min - self.band_window_optics[isp][ik, 0], b_max - self.band_window_optics[isp][ik, 0] + 1)
|
|
|
|
# loop over all symmetries
|
|
for R in self.rot_symmetries:
|
|
# get transformed velocity under symmetry R
|
|
vel_R = copy.deepcopy(self.velocities_k[isp][ik])
|
|
for nu1 in range(self.band_window_optics[isp][ik, 1] - self.band_window_optics[isp][ik, 0] + 1):
|
|
for nu2 in range(self.band_window_optics[isp][ik, 1] - self.band_window_optics[isp][ik, 0] + 1):
|
|
vel_R[nu1][nu2][:] = numpy.dot(R, vel_R[nu1][nu2][:])
|
|
|
|
# calculate Gamma_w for each direction from the velocities vel_R and the spectral function A_kw
|
|
for direction in self.directions:
|
|
for iw in xrange(n_om):
|
|
for iq in range(len(self.Om_mesh)):
|
|
if(iw + iOm_mesh[iq] >= n_om or self.omega[iw] < -self.Om_mesh[iq] + energy_window[0] or self.omega[iw] > self.Om_mesh[iq] + energy_window[1]): continue
|
|
|
|
self.Gamma_w[direction][iq, iw] += (numpy.dot(numpy.dot(numpy.dot(vel_R[v_i, v_i, dir_to_int[direction[0]]],
|
|
A_kw[isp][A_i, A_i, iw + iOm_mesh[iq]]), vel_R[v_i, v_i, dir_to_int[direction[1]]]),
|
|
A_kw[isp][A_i, A_i, iw ]).trace().real * self.bz_weights[ik])
|
|
|
|
for direction in self.directions:
|
|
self.Gamma_w[direction] = (mpi.all_reduce(mpi.world, self.Gamma_w[direction], lambda x, y : x + y)
|
|
/ self.cellvolume(self.lattice_type, self.lattice_constants, self.lattice_angles)[1] / self.n_symmetries)
|
|
|
|
|
|
def transport_coefficient(self, direction, iq, n, beta, method=None):
|
|
r"""
|
|
Calculates the transport coefficient A_n in a given direction for a given :math:`\Omega`. The required members (Gamma_w, directions, Om_mesh) have to be obtained first
|
|
by calling the function :meth:`transport_distribution <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools.transport_distribution>`. For n>0 A is set to NaN if :math:`\Omega` is not 0.0.
|
|
|
|
Parameters
|
|
----------
|
|
direction : string
|
|
:math:`\alpha\beta` e.g.: 'xx','yy','zz','xy','xz','yz'.
|
|
iq : integer
|
|
Index of :math:`\Omega` point in the member Om_mesh.
|
|
n : integer
|
|
Number of the desired moment of the transport distribution.
|
|
beta : double
|
|
Inverse temperature :math:`\beta`.
|
|
method : string
|
|
Integration method: cubic spline and scipy.integrate.quad ('quad'), simpson rule ('simps'), trapezoidal rule ('trapz'), rectangular integration (otherwise)
|
|
Note that the sampling points of the the self-energy are used!
|
|
|
|
Returns
|
|
-------
|
|
A : double
|
|
Transport coefficient.
|
|
"""
|
|
|
|
if not (mpi.is_master_node()): return
|
|
|
|
assert hasattr(self,'Gamma_w'), "transport_coefficient: Run transport_distribution first or load data from h5!"
|
|
|
|
if (self.Om_mesh[iq] == 0.0 or n == 0.0):
|
|
A = 0.0
|
|
# setup the integrand
|
|
if (self.Om_mesh[iq] == 0.0):
|
|
A_int = self.Gamma_w[direction][iq] * (self.fermi_dis(self.omega,beta) * self.fermi_dis(-self.omega,beta)) * (self.omega*beta)**n
|
|
elif (n == 0.0):
|
|
A_int = self.Gamma_w[direction][iq] * (self.fermi_dis(self.omega,beta) - self.fermi_dis(self.omega+self.Om_mesh[iq],beta))/(self.Om_mesh[iq]*beta)
|
|
|
|
# w-integration
|
|
if method == 'quad':
|
|
# quad on interpolated w-points with cubic spline
|
|
A_int_interp = interp1d(self.omega,A_int,kind='cubic')
|
|
A = quad(A_int_interp, min(self.omega), max(self.omega), epsabs=1.0e-12,epsrel=1.0e-12,limit = 500)
|
|
A = A[0]
|
|
elif method == 'simps':
|
|
# simpson rule for w-grid
|
|
A = simps(A_int,self.omega)
|
|
elif method == 'trapz':
|
|
# trapezoidal rule for w-grid
|
|
A = numpy.trapz(A_int,self.omega)
|
|
else:
|
|
# rectangular integration for w-grid (orignal implementation)
|
|
d_w = self.omega[1] - self.omega[0]
|
|
for iw in xrange(self.Gamma_w[direction].shape[1]):
|
|
A += A_int[iw]*d_w
|
|
A = A * numpy.pi * (2.0-self.SP)
|
|
else:
|
|
A = numpy.nan
|
|
return A
|
|
|
|
|
|
def conductivity_and_seebeck(self, beta, method=None):
|
|
r"""
|
|
Calculates the Seebeck coefficient and the optical conductivity by calling
|
|
:meth:`transport_coefficient <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools.transport_coefficient>`.
|
|
The required members (Gamma_w, directions, Om_mesh) have to be obtained first by calling the function
|
|
:meth:`transport_distribution <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools.transport_distribution>`.
|
|
|
|
Parameters
|
|
----------
|
|
beta : double
|
|
Inverse temperature :math:`\beta`.
|
|
|
|
Returns
|
|
-------
|
|
optic_cond : dictionary of double vectors
|
|
Optical conductivity in each direction and frequency given by Om_mesh.
|
|
|
|
seebeck : dictionary of double
|
|
Seebeck coefficient in each direction. If zero is not present in Om_mesh the Seebeck coefficient is set to NaN.
|
|
"""
|
|
|
|
if not (mpi.is_master_node()): return
|
|
|
|
assert hasattr(self,'Gamma_w'), "conductivity_and_seebeck: Run transport_distribution first or load data from h5!"
|
|
n_q = self.Gamma_w[self.directions[0]].shape[0]
|
|
|
|
A0 = {direction: numpy.full((n_q,),numpy.nan) for direction in self.directions}
|
|
A1 = {direction: numpy.full((n_q,),numpy.nan) for direction in self.directions}
|
|
self.seebeck = {direction: numpy.nan for direction in self.directions}
|
|
self.optic_cond = {direction: numpy.full((n_q,),numpy.nan) for direction in self.directions}
|
|
|
|
for direction in self.directions:
|
|
for iq in xrange(n_q):
|
|
A0[direction][iq] = self.transport_coefficient(direction, iq=iq, n=0, beta=beta, method=method)
|
|
A1[direction][iq] = self.transport_coefficient(direction, iq=iq, n=1, beta=beta, method=method)
|
|
print "A_0 in direction %s for Omega = %.2f %e a.u." % (direction, self.Om_mesh[iq], A0[direction][iq])
|
|
print "A_1 in direction %s for Omega = %.2f %e a.u." % (direction, self.Om_mesh[iq], A1[direction][iq])
|
|
if ~numpy.isnan(A1[direction][iq]):
|
|
# Seebeck is overwritten if there is more than one Omega = 0 in Om_mesh
|
|
self.seebeck[direction] = - A1[direction][iq] / A0[direction][iq] * 86.17
|
|
self.optic_cond[direction] = beta * A0[direction] * 10700.0 / numpy.pi
|
|
for iq in xrange(n_q):
|
|
print "Conductivity in direction %s for Omega = %.2f %f x 10^4 Ohm^-1 cm^-1" % (direction, self.Om_mesh[iq], self.optic_cond[direction][iq])
|
|
if not (numpy.isnan(A1[direction][iq])):
|
|
print "Seebeck in direction %s for Omega = 0.00 %f x 10^(-6) V/K" % (direction, self.seebeck[direction])
|
|
|
|
return self.optic_cond, self.seebeck
|
|
|
|
|
|
def fermi_dis(self,w,beta):
|
|
r"""
|
|
Fermi distribution.
|
|
|
|
.. math::
|
|
f(x) = 1/(e^x+1).
|
|
|
|
Parameters
|
|
----------
|
|
w : double
|
|
frequency
|
|
beta : double
|
|
inverse temperature
|
|
|
|
Returns
|
|
-------
|
|
f : double
|
|
"""
|
|
return 1.0/(numpy.exp(w*beta)+1)
|