3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-27 06:43:40 +01:00
dft_tools/doc/reference/c++/arrays_old/all.rst
Olivier Parcollet f2c7d449cc First commit : triqs libs version 1.0 alpha1
for earlier commits, see TRIQS0.x repository.
2013-07-17 19:24:07 +02:00

362 lines
14 KiB
ReStructuredText

.. highlight:: c
array and array_view
============================
array and array_view are the class for standard d-dimensional cuboid array
and the corresponding view.
Template parameters
----------------------------
* The class has four template parameters (same for array_view).
.. code-block:: c
array<ValueType, // The type of the element of the array
Rank, // int : the rank of the array
IndexOrderTag=Tag::C, // The ordering in memory : can be Tag::C, Tag::Fortran or a permutation
StorageTag=Tag::shared_block // The storage : Tag::shared_block or Tag::numpy
>
============================ ========================== =======================================
Template parameter Access in the class Meaning
============================ ========================== =======================================
ValueType value_type The type of the element of the array
Rank rank The rank of the array *[int]*
IndexOrderTag indexmap_type The ordering in memory : can be Tag::C, Tag::Fortran or a permutation
StorageTag storage_type The storage : Tag::shared_block or Tag::numpy
============================ ========================== =======================================
* Various IndexOrderTag are possible :
================= ====================================================================================================
IndexOrderTag Meaning
================= ====================================================================================================
Tag::C C-style order *[default]*
Tag::Fortran Fortran-style order
P - P is a permutation
- Determined by a permutation P at compile time. Explain here the permutation, the convention.
================= ====================================================================================================
* Two possible storages :
================== ============================================================================
StorageTag Meaning
================== ============================================================================
Tag::shared_block a (shared_ptr on a) C++ block *[default]*
Tag::numpy stored in a numpy array, in which case the array is also a numpy array
and read numpy, be returned as numpy, sliced into a numpy, etc...
================== ============================================================================
.. _array_constructors:
Constructors
-----------------
Intentionally, array and array_view have only a few constructors :
========================================== ===========================================================================================
Constructors of array Comments
========================================== ===========================================================================================
array() - empty array of size 0
array(size_t, ...., size_t) - from the dimensions
array(cuboid_domain<rank> const &) - a new array with the corresponding cuboid
array(const array &) - copy construction
array(const T & X) - Type T models the :ref:`HasImmutableArrayInterface` concept.
- X must have the appropriate domain (checked at compile time).
- Enabled iif has_immutable_array_interface<T>::value == true.
- Constructs a new array of domain X.domain() and fills it with evaluation of X.
========================================== ===========================================================================================
====================================================================== =======================================================================================
Constructors of array_view Comments
====================================================================== =======================================================================================
array_view(indexmap_type const & I, S_type const &) from a couple of indexmap I and storage of type S_type
array_view(const T & X) T is any type such that X.indexmap() and X.storage(). Models ISP ...
====================================================================== =======================================================================================
array_view are typically constructed by slicing (Cf below).
* Examples ::
array<int,2> A(10,2);
array<int,2,Tag::Fortran> Af (2,2);
//Higher dim, custom order :
array<long, 3, Permutations::permutation<2,1,0> > A0 (2,3,4);
array<long, 3, Permutations::permutation<0,1,2> > A1 (2,3,4);
array<long, 3, Permutations::permutation<1,0,2> > A2 (2,3,4);
array<long, 3 > A3 (2,3,4);
array<long, 3, Tag::Fortran > A4 (2,3,4);
Access to data, domain, simple evaluation, ...
--------------------------------------------------------
array, array_view, matrix, matrix_view, vector, vector_view model HasImmutableArrayInterface.
Assignment & Copy
--------------------
Every classes comes in two flavors: C and C_view (with C = array, matrix, vector, etc...).
These two flavors differ in the way they handle their data in construction, copy construction, assignement.
Basically, C owns its data, while C_view if only a view.
array, matrix, vector
^^^^^^^^^^^^^^^^^^^^^^^^
They own their data. In many aspects, they are similar to like std::vector.
* The data are contiguous in memory.
* Constructors and copy constructors all create a new memory block. If needed, they
make a *true* copy of the data.
* The assignment operator may create a new Storage if size do not match.
* As a result, /pointers to the data/ and reference to the storage are invalid after assignment.
* They can be resized, again invalidating all references.
array_view, matrix_view, vector_view
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
These classes do not own their data, but only present a view of them.
* The data may not be contiguous in memory (e.g. if the view is the result of a slice).
* Constructors only make another view of the data.
* They *never* copy data, so they are quite quick.
In particular, copy constructor makes shallow copy (i.e. return another view).
* The assignement operator just copy data into the view. Behaviour is undefined if the
size of the view is too small (define the macro ARRAY_CHECK for dynamical debugging checks).
* Pointers to data taken from the views are still valid after assignement.
* Views can be not be resized.
.. warning:: **Memory management**
Views carry a reference to the memory block they view,
which guarantees that memory will not be
dellocated before the destruction of the view.
Indeed, the Storage types implement incorporated a reference counting mechanism,
either using boost::shared_ptr for the C++ arrays, or using the python references
for the numpy storage.
The memory block will be dellocated when its array and all array_view
pointing to it or to a portion of it will be destroyed, and only at that moment.
Examples::
array<int,Matrix> *A = new array<int,Matrix> (Matrix(2,3)); // create an array A
array_view<int, Matrix> B(*A); // making a view
delete A; // A is gone...
cout<<B<<endl; // ok, but B (and the data) is still alive
Operator =
------------
array, matrix, vector
^^^^^^^^^^^^^^^^^^^^^^^^
//.. cpp:member::
template<typename RHS> array & operator=(const RHS & X);
* RHS models HasImmutableArrayInterface.
* array is first resized to have a domain X.domain(), and then filled
with the evaluation of X (e.g. a copy if X is an array, computing the value if X is an expression).
array_view, matrix_view, vector_view
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
//.. cpp:function::
template<typename RHS> array_view & operator=(const RHS & X);
* RHS models HasImmutableArrayInterface [ or less ? : RHS can be evaluated in the domain_type::value_type, no domain needed.].
* Dimension of the view must match or behaviour is undefined.
Iterators and interaction with STL containers and algorithms
----------------------------------------------------------------
STL compliant iterators, hence STL algorithms work...
Examples::
array<long,2> A (2,3);
// first print the index generator
for (array<long,2>::indexmap_type::domain_type::generator it = A.indexmap().domain().begin(); !it.at_end(); ++it)
cout<<" "<<*it<<endl;
//A(i,j) = i + 10*j
for (array<long,2>::iterator it = A.begin(); !it.at_end(); ++it)
{ *it =it.indices().get<0>() + 10 *it.indices().get<1>() ; }
int u=0;
for (array<long,2>::iterator it = A.begin(); !it.at_end(); ++it,++u) { *it =u; }
array<long,2> A (2,3);
std::vector<array<long,2> > VV; VV.push_back(A);
map<string, array<long,2> > MAP; MAP["1"] = A;
// Trying to put a vector in an array
std::vector<int> V (10);
array<int,1 > B(V.size()), C(V.size());
for (unsigned int i =0; i<10; ++i) V[i] = 10+i;
std::copy(V.begin(),V.end(),B.begin());
std::copy(B.begin(),B.end(),V.begin());
cout<<" Number of elements <25 : "<< std::count_if(B.begin(), B.end(),te)<<endl;
cout<<" max(B) "<< *std::max_element(B.begin(),B.end())<<endl;
std::replace_if (B.begin(), B.end(), te, 0);
std::swap(B,C);
Slicing (or partial view)
-------------------------------------------------
Slicing or partial view consists in presenting a view of a sub-part of the array, e.g.
Examples::
array<long,2> A (2,3);
array_view<long,1> SL( A(range(0,2),0));
array_view<long,1> SL2( A(1,range(0,2)));
It is the standard way to produce a view.
NB :
* we use here the python convention: range(0,3) is 0:3, i.e. 0,1,2 NOT 0,1,2,3.
* Todo : in fact we should wrap the range to python::slice for interoperability with python.
Serialization
-------------------------------------------------
* Boost.serialization
* Boost.mpi
Examples::
array<long,2> A (2,2), B(2,2),C(2,2);
boost::mpi::reduce (world, A,C, std::plus<array<long,2> >(),0);
* HDF5 (ALPS), eg.
Examples::
array<long,2> A (2,3),B,vc;
array<long,2,Tag::Fortran> Af,Bf,vf;
alps::hdf5::oarchive ar1("data.h5");
ar1 << alps::make_pvp("Tableau", A);
ar1 << alps::make_pvp("Tableau2", Af);
ar1 << alps::make_pvp("Tableau_view", A(range(),range(1,3)));
alps::hdf5::iarchive ar2("data.h5");
ar2 >> alps::make_pvp("Tableau", B);
ar2 >> alps::make_pvp("Tableau", Bf);
ar2 >> alps::make_pvp("Tableau_view", vc);
ar2 >> alps::make_pvp("TableauC",C);
blas/lapack interface
-------------------------------------------------
* matrix, vector and their views are interfaced with blas/lapack, via boost::numerics::bindings.
* If needed (for a view), a temporary (and silent) copy is made to reorganize the
data before calling blas/lapack (impl: cache class).
Of course, performance is altered, but code is simple...
Examples::
namespace blas = boost::numeric::bindings::blas;
namespace lapack = boost::numeric::bindings::lapack;
triqs_arrays::vector<std::complex<double> > V(5),V2(5);
triqs_arrays::vector <double> V3(2);
triqs_arrays::matrix<double,'F' > M1(2,2), M2(2,2), M3(2,2);
blas::axpy(2.0,V,V2);
blas::gemm(1.0,M1, M2, 1.0, M3);
blas::ger(1.0,V3,V3,M2);
// invert
triqs_arrays::vector <int> ipiv(2);
lapack::getrf(M1, ipiv);
lapack::getri(M1, ipiv);
Transparent use of python arrays
-------------------------------------------------
* If the storage is Tag::numpy, the memory block is allocated/viewed through the numpy interface.
* One can mix arrays with any storage in expression (they have the same concepts).
* boost python converters are enable for those arrays into numpy and their views [impl :broken for views].
Expression
-------------------------------------------------
Simple expressions are made using boost.proto.
Examples ::
array<long,2> A (2,2), B(2,2),C;
C= A + 2*B;
array<long,2> D( A+ 2*B);
// or even in C++0x :
auto e = A + 2*B; // expression, purely formal
array<long,2> D(e); // really makes the computation
cout<< e <<endl ; // prints the expression
cout<< e(1,2) <<endl ; // evaluates just at a point
cout<< e.domain() <<endl ; // just computes the domain
array<long,2> A (2,2), B(2,2),C(2,2);
C= A + 2*B;
C= std::plus<array<long,2> >()(A,B);
C = A + Transpose(B); // Transpose(X) returns a lazy object that models HasImmutableArrayInterface.
C = A + Transpose(B + B); // X can also be an expression...
C = Transpose(B); //
array<double,2> F( 0.5 * A); // Type promotion is automatic
// non square
array<long,2> R(2,3),Rt(3,2);
cout<<" R = "<< array<long,2>(Transpose(R)) <<endl;
// mapping any function
C = map_expr(&sqr,A);
cout<<" C = "<< map_expr(&sqr,A,"SQR")<<" = "<<C<<endl;
// matmul as expression Oi are 'C' or 'F'
matrix<double,O1> M1(2,2); matrix<double,O2> M2(2,2); matrix<double,O3> M3;
// The central instruction : note that matmul returns a lazy object
// that has ImmutableArray interface, and defines a specialized version assignment
// As a result this is equivalent to some matmul_with_lapack(M1,M2,M3) : there is NO intermediate copy.
M3 = matmul(M1,M2);
See expression.hpp.
At the moment, only +,-, * and / by scalar are implemented.
An expression models HasImmutableArrayInterface, i.e. :
* It has a domain (computed from the expression)
* It can be evaluated.
It is then easy to mix them with other objects,
that model the same concept. See e.g. expr2.cpp (map_expr) for examples.
* *Multiplication* :
not decided, since it is not the same for array or matrices.
Two choices :
* Do not add * for array, matrices (use matmul e.g.) and allow mixing array, matrix
e.g. add an array<int,2> and a matrix <int>
* Add the *, but then do different expression for array and matrix/vector,
then one can not mix them.
In that case, it is however trivial to say e.g. M + matrix_view<int>(A) if A is an array.