mirror of
https://github.com/triqs/dft_tools
synced 2024-11-01 03:33:50 +01:00
246 lines
8.8 KiB
C++
246 lines
8.8 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2011 by M. Ferrero, O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#include "tight_binding.hpp"
|
|
#include <triqs/arrays/algorithms.hpp>
|
|
#include <triqs/arrays/linalg/eigenelements.hpp>
|
|
#include "grid_generator.hpp"
|
|
namespace triqs {
|
|
namespace lattice {
|
|
|
|
using namespace arrays;
|
|
|
|
tight_binding::tight_binding(bravais_lattice const& bl, std::vector<std::vector<long>> all_disp,
|
|
std::vector<matrix<dcomplex>> all_matrices)
|
|
: bl_(bl), all_disp(std::move(all_disp)), all_matrices(std::move(all_matrices)) {
|
|
|
|
// checking inputs
|
|
if (all_disp.size() != all_matrices.size()) TRIQS_RUNTIME_ERROR << " Number of displacements != Number of matrices";
|
|
for (int i = 0; i < all_disp.size(); ++i) {
|
|
if (all_disp[i].size() != bl_.dim())
|
|
TRIQS_RUNTIME_ERROR << "displacement of incorrect size : got " << all_disp[i].size() << "instead of " << bl_.dim();
|
|
if (first_dim(all_matrices[i]) != n_bands())
|
|
TRIQS_RUNTIME_ERROR << "the first dim matrix is of size " << first_dim(all_matrices[i]) << " instead of " << n_bands();
|
|
if (second_dim(all_matrices[i]) != n_bands())
|
|
TRIQS_RUNTIME_ERROR << "the second dim matrix is of size " << second_dim(all_matrices[i]) << " instead of " << n_bands();
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------
|
|
array<dcomplex, 3> hopping_stack(tight_binding const& TB, arrays::array_const_view<double, 2> k_stack) {
|
|
auto TK = fourier(TB);
|
|
array<dcomplex, 3> res(TB.n_bands(), TB.n_bands(), k_stack.shape(1));
|
|
for (int i = 0; i < k_stack.shape(1); ++i) res(range(), range(), i) = TK(k_stack(range(), i));
|
|
return res;
|
|
}
|
|
|
|
//------------------------------------------------------
|
|
array<double, 2> energies_on_bz_path(tight_binding const& TB, k_t const& K1, k_t const& K2, int n_pts) {
|
|
auto TK = fourier(TB);
|
|
int norb = TB.lattice().n_orbitals();
|
|
int ndim = TB.lattice().dim();
|
|
array<double, 2> eval(norb, n_pts);
|
|
k_t dk = (K2 - K1) / double(n_pts), k = K1;
|
|
for (int i = 0; i < n_pts; ++i, k += dk) {
|
|
eval(range(), i) = linalg::eigenvalues(TK(k(range(0, ndim)))());
|
|
}
|
|
return eval;
|
|
}
|
|
|
|
//------------------------------------------------------
|
|
array<dcomplex, 3> energy_matrix_on_bz_path(tight_binding const& TB, k_t const& K1, k_t const& K2, int n_pts) {
|
|
auto TK = fourier(TB);
|
|
int norb = TB.lattice().n_orbitals();
|
|
int ndim = TB.lattice().dim();
|
|
array<dcomplex, 3> eval(norb,norb,n_pts);
|
|
k_t dk = (K2 - K1) / double(n_pts), k = K1;
|
|
for (int i = 0; i < n_pts; ++i, k += dk) {
|
|
eval(range(),range(),i) = TK(k(range(0, ndim)))();
|
|
}
|
|
return eval;
|
|
}
|
|
|
|
//------------------------------------------------------
|
|
array<double, 2> energies_on_bz_grid(tight_binding const& TB, int n_pts) {
|
|
|
|
auto TK = fourier(TB);
|
|
int norb = TB.lattice().n_orbitals();
|
|
int ndim = TB.lattice().dim();
|
|
grid_generator grid(ndim, n_pts);
|
|
array<double, 2> eval(norb, grid.size());
|
|
for (; grid; ++grid) {
|
|
eval(range(), grid.index()) = linalg::eigenvalues(TK((*grid)(range(0, ndim)))());
|
|
}
|
|
return eval;
|
|
}
|
|
|
|
//------------------------------------------------------
|
|
|
|
std::pair<array<double, 1>, array<double, 2>> dos(tight_binding const& TB, int nkpts, int neps) {
|
|
|
|
// The fourier transform of TK
|
|
auto TK = fourier(TB);
|
|
|
|
// loop on the BZ
|
|
int ndim = TB.lattice().dim();
|
|
int norb = TB.lattice().n_orbitals();
|
|
grid_generator grid(ndim, nkpts);
|
|
array<double, 1> tempeval(norb);
|
|
array<dcomplex, 3> evec(norb, norb, grid.size());
|
|
array<double, 2> eval(norb, grid.size());
|
|
if (norb == 1)
|
|
for (; grid; ++grid) {
|
|
double ee = real(TK((*grid)(range(0, ndim)))(0, 0));
|
|
eval(0, grid.index()) = ee;
|
|
evec(0, 0, grid.index()) = 1;
|
|
}
|
|
else
|
|
for (; grid; ++grid) {
|
|
// cerr<<" index = "<<grid.index()<<endl;
|
|
array_view<double, 1> eval_sl = eval(range(), grid.index());
|
|
array_view<dcomplex, 2> evec_sl = evec(range(), range(), grid.index());
|
|
std::tie(eval_sl, evec_sl) = linalg::eigenelements(TK((*grid)(range(0, ndim)))); //, true);
|
|
// cerr<< " point "<< *grid << " value "<< eval_sl<< endl; //" "<< (*grid) (range(0,ndim)) << endl;
|
|
}
|
|
|
|
// define the epsilon mesh, etc.
|
|
array<double, 1> epsilon(neps);
|
|
double epsmax = max_element(eval);
|
|
double epsmin = min_element(eval);
|
|
double deps = (epsmax - epsmin) / neps;
|
|
// for (int i =0; i< neps; ++i) epsilon(i)= epsmin+i/(neps-1.0)*(epsmax-epsmin);
|
|
for (int i = 0; i < neps; ++i) epsilon(i) = epsmin + (i + 0.5) * deps;
|
|
|
|
// bin the eigenvalues according to their energy
|
|
// NOTE: a is defined as an integer. it is the index for the DOS.
|
|
// REPORT <<"Starting Binning ...."<<endl;
|
|
array<double, 2> rho(neps, norb);
|
|
rho() = 0;
|
|
for (int l = 0; l < norb; l++) {
|
|
for (int j = 0; j < grid.size(); j++) {
|
|
int a = int((eval(l, j) - epsmin) / deps);
|
|
if (a == int(neps)) a = a - 1;
|
|
for (int k = 0; k < norb; k++) {
|
|
rho(a, l) += real(conj(evec(l, k, j)) * evec(l, k, j));
|
|
}
|
|
}
|
|
}
|
|
rho /= grid.size() * deps;
|
|
return std::make_pair(epsilon, rho);
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------
|
|
|
|
std::pair<array<double, 1>, array<double, 1>> dos_patch(tight_binding const& TB, const array<double, 2>& triangles, int neps,
|
|
int ndiv) {
|
|
// WARNING: This version only works for a single band Hamiltonian in 2 dimensions!!!!
|
|
// triangles is an array of points defining the triangles of the patch
|
|
// neps in the number of bins in energy
|
|
// ndiv in the number of divisions used to divide the triangles
|
|
|
|
// int ndim=TB.lattice().dim();
|
|
// int norb=TB.lattice().n_orbitals();
|
|
int ntri = triangles.shape(0) / 3;
|
|
array<double, 1> dos(neps);
|
|
|
|
// Check consistency
|
|
int ndim = TB.lattice().dim();
|
|
// int norb=TB.lattice().n_orbitals();
|
|
if (ndim != 2) TRIQS_RUNTIME_ERROR << "dos_patch : dimension 2 only !";
|
|
if (triangles.shape(1) != ndim)
|
|
TRIQS_RUNTIME_ERROR << "dos_patch : the second dimension of the 'triangle' array in not " << ndim;
|
|
|
|
// Every triangle has ndiv*ndiv k points
|
|
int nk = ntri * ndiv * ndiv;
|
|
int k_index = 0;
|
|
double epsmax = -100000, epsmin = 100000;
|
|
array<dcomplex, 2> thop(1, 1);
|
|
array<double, 1> energ(nk), weight(nk);
|
|
|
|
// a, b, c are the corners of the triangle
|
|
// g the center of gravity taken from a
|
|
array<double, 1> a(ndim), b(ndim), c(ndim), g(ndim), rv(ndim);
|
|
int pt = 0;
|
|
double s, t;
|
|
|
|
// The fourier transform of TK
|
|
auto TK = fourier(TB);
|
|
|
|
// loop over the triangles
|
|
for (int tri = 0; tri < ntri; tri++) {
|
|
a = triangles(pt, range());
|
|
pt++;
|
|
b = triangles(pt, range());
|
|
pt++;
|
|
c = triangles(pt, range());
|
|
pt++;
|
|
g = ((a + b + c) / 3.0 - a) / double(ndiv);
|
|
|
|
// the area around a k point might be different from one triangle to the other
|
|
// so I use it to weight the sum in the dos
|
|
double area = abs(0.5 * ((b(0) - a(0)) * (c(1) - a(1)) - (b(1) - a(1)) * (c(0) - a(0))) / (ndiv * ndiv));
|
|
|
|
for (int i = 0; i < ndiv; i++) {
|
|
s = i / double(ndiv);
|
|
for (int j = 0; j < ndiv - i; j++) {
|
|
t = j / double(ndiv);
|
|
for (int k = 0; k < 2; k++) {
|
|
|
|
rv = a + s * (b - a) + t * (c - a) + (k + 1.0) * g;
|
|
|
|
if (k == 0 || j < ndiv - i - 1) {
|
|
|
|
energ(k_index) = real(TK(rv)(0, 0));
|
|
// compute(rv);
|
|
// energ(k_index) = real(tk_for_eval(1,1)); //tk_for_eval is Fortran array
|
|
weight(k_index) = area;
|
|
if (energ(k_index) > epsmax) epsmax = energ(k_index);
|
|
if (energ(k_index) < epsmin) epsmin = energ(k_index);
|
|
k_index++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// check consistency
|
|
assert(k_index == nk);
|
|
|
|
// define the epsilon mesh, etc.
|
|
array<double, 1> epsilon(neps);
|
|
double deps = (epsmax - epsmin) / neps;
|
|
for (int i = 0; i < neps; ++i) epsilon(i) = epsmin + i / (neps - 1.0) * (epsmax - epsmin);
|
|
|
|
// bin the eigenvalues according to their energy
|
|
int ind;
|
|
double totalweight(0.0);
|
|
dos() = 0.0;
|
|
for (int j = 0; j < nk; j++) {
|
|
ind = int((energ(j) - epsmin) / deps);
|
|
if (ind == int(neps)) ind--;
|
|
dos(ind) += weight(j);
|
|
totalweight += weight(j);
|
|
}
|
|
dos /= deps; // Normalize the DOS
|
|
return {std::move(epsilon), std::move(dos)};
|
|
}
|
|
}
|
|
}
|
|
|