mirror of
https://github.com/triqs/dft_tools
synced 2025-01-12 22:18:23 +01:00
f2c7d449cc
for earlier commits, see TRIQS0.x repository.
210 lines
5.2 KiB
ReStructuredText
210 lines
5.2 KiB
ReStructuredText
TRIQS in a nutshell
|
|
===================
|
|
|
|
TRIQS is a toolbox containing **ready-to-use applications**, **python modules** as well as **C++ libraries** aimed at physicists in the field of quantum interacting systems.
|
|
|
|
Applications
|
|
------------
|
|
|
|
Interface to Wien2k for LDA+DMFT calculation
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
TRIQS allows you to turn band-structure calculations obtained from the Wien2k package to inputs to full-fledged LDA+DMFT calculations in a few lines!
|
|
|
|
|
|
|
|
[example here]
|
|
|
|
To learn more, see <link>
|
|
|
|
Solvers for impurity models
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
TRIQS comes with powerful numerical solvers for quantum impurity models.
|
|
|
|
|
|
[example here]
|
|
|
|
To learn more, see <link>
|
|
|
|
Python modules
|
|
--------------
|
|
|
|
Green's functions
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
With TRIQS, the manipulation of Green's functions is made easy: construction of Green's functions in frequency and time domains (imaginary and real), Fourier transforms, visualization, tail computation...
|
|
|
|
|
|
|
|
.. runblock:: python
|
|
|
|
# Import the Green's functions
|
|
from pytriqs.gf.local import GfImFreq, iOmega_n, inverse
|
|
|
|
# Create the Matsubara-frequency Green's function and initialize it
|
|
gw = GfImFreq(indices = [1], beta = 50, n_points = 1000, name = "imp")
|
|
gw <<= inverse( iOmega_n + 0.5 )
|
|
|
|
|
|
# Create an imaginary-time Green's function and plot it
|
|
gt = GFBloc_ImTime(Indices = [1], Beta = 50)
|
|
gt <<= InverseFourier(gw)
|
|
|
|
#from pytriqs.plot.mpl_interface import oplot
|
|
#oplot(g, '-o', x_window = (0,10))
|
|
|
|
print gt(0.5)
|
|
|
|
|
|
To learn more, see <link>
|
|
|
|
Lattice tools
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
With TRIQS, build a tight-binding model on any lattice in a few lines, and extract its density of states, dispersion...
|
|
|
|
|
|
[example here]
|
|
|
|
.. runblock:: python
|
|
|
|
print 2+2 # this will give output
|
|
|
|
|
|
To learn more, see <link>
|
|
|
|
C++ libraries
|
|
-------------
|
|
|
|
|
|
Monte-Carlo library
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Set up a Monte-Carlo simulation in a few lines: you write the configuration, moves and measures, while TRIQS takes care of the Metropolis algorithm and parallelization of the code.
|
|
|
|
|
|
.. compileblock::
|
|
|
|
#include <iostream>
|
|
#include <triqs/utility/callbacks.hpp>
|
|
#include <triqs/mc_tools/mc_generic.hpp>
|
|
|
|
// the configuration: a spin, the inverse temperature, the external field
|
|
struct configuration {
|
|
int spin; double beta, h;
|
|
configuration(double beta_, double h_) : spin(-1), beta(beta_), h(h_) {}
|
|
};
|
|
|
|
// a move: flip the spin
|
|
struct flip {
|
|
configuration & config;
|
|
|
|
flip(configuration & config_) : config(config_) {}
|
|
|
|
double attempt() { return std::exp(-2*config.spin*config.h*config.beta); }
|
|
double accept() { config.spin*= -1; return 1.0; }
|
|
void reject() {}
|
|
};
|
|
|
|
// a measurement: the magnetization
|
|
struct compute_m {
|
|
configuration & config;
|
|
double Z, M;
|
|
|
|
compute_m(configuration & config_) : config(config_), Z(0), M(0) {}
|
|
|
|
void accumulate(double sign) { Z += sign; M += sign * config.spin; }
|
|
|
|
void collect_results(boost::mpi::communicator const &c) {
|
|
double sum_Z, sum_M;
|
|
boost::mpi::reduce(c, Z, sum_Z, std::plus<double>(), 0);
|
|
boost::mpi::reduce(c, M, sum_M, std::plus<double>(), 0);
|
|
|
|
if (c.rank() == 0) {
|
|
std::cout << "Magnetization: " << sum_M / sum_Z << std::endl << std::endl;
|
|
}
|
|
}
|
|
};
|
|
|
|
int main(int argc, char* argv[]) {
|
|
|
|
// initialize mpi
|
|
boost::mpi::environment env(argc, argv);
|
|
boost::mpi::communicator world;
|
|
|
|
// greeting
|
|
if (world.rank() == 0) std::cout << "Isolated spin" << std::endl;
|
|
|
|
// prepare the MC parameters
|
|
int N_Cycles = 500000;
|
|
int Length_Cycle = 10;
|
|
int N_Warmup_Cycles = 1000;
|
|
std::string Random_Name = "";
|
|
int Random_Seed = 374982 + world.rank() * 273894;
|
|
int Verbosity = (world.rank() == 0 ? 2 : 0);
|
|
|
|
// construct a Monte Carlo loop
|
|
triqs::mc_tools::mc_generic<double> SpinMC(N_Cycles, Length_Cycle, N_Warmup_Cycles,
|
|
Random_Name, Random_Seed, Verbosity);
|
|
|
|
// parameters of the model
|
|
double beta = 0.3;
|
|
double field = 0.5;
|
|
|
|
// construct configuration
|
|
configuration config(beta, field);
|
|
|
|
// add moves and measures
|
|
SpinMC.add_move(flip(config), "flip move");
|
|
SpinMC.add_measure(compute_m(config), "magnetization measure");
|
|
|
|
// Run and collect results
|
|
SpinMC.start(1.0, triqs::utility::clock_callback(600));
|
|
SpinMC.collect_results(world);
|
|
|
|
return 0;
|
|
}
|
|
|
|
To learn more, see <link>
|
|
|
|
Array library
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Create, manipulate and store powerful multi-dimensional arrays:
|
|
|
|
|
|
.. highlight:: c
|
|
|
|
|
|
.. compileblock::
|
|
|
|
#include <triqs/arrays.hpp>
|
|
using triqs::arrays::array;
|
|
int main(){
|
|
array<double,1> A(20);
|
|
}
|
|
|
|
To learn more, see <link>
|
|
|
|
Expression library: CLEF
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Write mathematical expressions in a seamless and computationally efficient way:
|
|
|
|
|
|
.. compileblock::
|
|
|
|
#include <triqs/clef.hpp>
|
|
int main () {
|
|
triqs::clef::placeholder <1> x_;
|
|
|
|
auto e1 = cos(2*x_+1);
|
|
auto e2 = abs(2*x_-1);
|
|
auto e3 = floor(2*x_-1);
|
|
auto e4 = pow(2*x_+1,2);
|
|
}
|
|
|
|
|
|
To learn more, see <link>
|