3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-13 06:28:21 +01:00
dft_tools/triqs/arrays/storages/mem_block.hpp
Olivier Parcollet f2c7d449cc First commit : triqs libs version 1.0 alpha1
for earlier commits, see TRIQS0.x repository.
2013-07-17 19:24:07 +02:00

157 lines
5.9 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_MEM_BLOCK_H
#define TRIQS_MEM_BLOCK_H
#include "../../utility/exceptions.hpp"
#include <Python.h>
#include <numpy/arrayobject.h>
#include "./memcopy.hpp"
#ifdef TRIQS_ARRAYS_DEBUG_TRACE_MEM
#include <iostream>
#define TRACE_MEM_DEBUG(X) std::cerr<< X << std::endl;
#else
#define TRACE_MEM_DEBUG(X)
#endif
namespace triqs { namespace arrays { namespace storages { namespace details {
template<typename ValueType> class mem_block {
typedef typename boost::remove_const<ValueType>::type non_const_value_type;
size_t size_;
non_const_value_type * restrict p;
PyObject * py_obj;
static void import_numpy_array() { if (_import_array()!=0) TRIQS_RUNTIME_ERROR <<"Internal Error in importing numpy";}
public :
mem_block():size_(0),p(NULL),py_obj(NULL){}
mem_block (size_t s):size_(s),py_obj(NULL){
//p = new non_const_value_type[s]; // check speed penalty for try ??
try { p = new non_const_value_type[s];}
catch (std::bad_alloc& ba) { TRIQS_RUNTIME_ERROR<< "Memory allocation error : bad_alloc : "<< ba.what();}
}
mem_block (PyObject * obj, bool borrowed ) {
TRACE_MEM_DEBUG(" construct memblock from pyobject"<<obj<< " # ref ="<<obj->ob_refcnt<<" borrowed = "<< borrowed);
assert(obj); import_numpy_array();
if (borrowed) Py_INCREF(obj);
if (!PyArray_Check(obj)) TRIQS_RUNTIME_ERROR<<"Internal error : mem_block construct from pyo : obj is not an array";
PyArrayObject * arr = (PyArrayObject *)(obj);
size_ = PyArray_SIZE(arr);
this->p = (non_const_value_type*)PyArray_DATA(arr);
py_obj = obj;
}
~mem_block(){ // delete memory manually iif py_obj is not set. Otherwise the python interpreter will do that for us.
TRACE_MEM_DEBUG("deleting mem block p ="<<p<< " py_obj = "<< py_obj << " ref of py obj if exists"<<(py_obj ? py_obj->ob_refcnt: -1));
if (py_obj==NULL) { if (p) { delete[] p;} }
else Py_DECREF(py_obj);
}
void operator=(const mem_block & X) {
//assert( py_obj==NULL);
assert(size_==X.size_);assert(p); assert(X.p);
storages::memcopy (p, X.p, size_);
}
mem_block ( mem_block const & X): size_(X.size()), py_obj(NULL) {
//p = new non_const_value_type[s]; // check speed penalty for try ??
try { p = new non_const_value_type[X.size()];}
catch (std::bad_alloc& ba) { TRIQS_RUNTIME_ERROR<< "Memory allocation error : bad_alloc : "<< ba.what();}
if ((X.py_obj==NULL) || (PyCObject_Check(X.py_obj))) { (*this) = X; }
else {
// else make a new copy of the numpy ...
import_numpy_array();
//assert(PyArray_Check(X.py_obj));
if (!is_scalar_or_pod<ValueType>::value) TRIQS_RUNTIME_ERROR << "Internal Error : memcpy on non-scalar";
#ifdef TRIQS_NUMPY_VERSION_LT_17
if ( ( PyArray_ISFORTRAN(X.py_obj)) || (PyArray_ISCONTIGUOUS(X.py_obj))) {
memcpy (p,PyArray_DATA(X.py_obj),size_ * sizeof(ValueType));
}
#else
// STRANGE : uncommenting this leads to a segfault on mac ???
// TO BE INVESTIGATED, IT IS NOT NORMAL
//if (!PyArray_Check(X.py_obj)) TRIQS_RUNTIME_ERROR<<"Internal error : is not an array";
PyArrayObject * arr3 = (PyArrayObject *)(X.py_obj);
if ( ( PyArray_ISFORTRAN(arr3)) || (PyArray_ISCONTIGUOUS(arr3))) {
memcpy (p,PyArray_DATA(arr3),size_ * sizeof(ValueType));
}
#endif
else { // if the X.py_obj is not contiguous, first let numpy copy it properly
PyObject * na = PyObject_CallMethod(X.py_obj,(char *)"copy",NULL);
assert(na);
#ifdef TRIQS_NUMPY_VERSION_LT_17
assert( ( PyArray_ISFORTRAN(na)) || (PyArray_ISCONTIGUOUS(na)));
memcpy (p,PyArray_DATA(na),size_ * sizeof(ValueType));
#else
if (!PyArray_Check(na)) TRIQS_RUNTIME_ERROR<<"Internal error : is not an array";
PyArrayObject * arr = (PyArrayObject *)(na);
assert( ( PyArray_ISFORTRAN(arr)) || (PyArray_ISCONTIGUOUS(arr)));
memcpy (p,PyArray_DATA(arr),size_ * sizeof(ValueType));
#endif
Py_DECREF(na);
}
}
}
static void delete_pointeur( void *ptr ) {
TRACE_MEM_DEBUG("deleting data block"<<(non_const_value_type*) ptr);
delete [] ( (non_const_value_type*) ptr) ;
}
PyObject * new_ref_to_guard() {
if (py_obj==NULL) {
TRACE_MEM_DEBUG(" activating python guard for C++ block"<<p<< " py_obj = "<< py_obj);
py_obj = PyCObject_FromVoidPtr( (void*) p, &mem_block<ValueType>::delete_pointeur);
}
Py_INCREF(py_obj);
return py_obj;
}
non_const_value_type & operator[](size_t i) {return p[i];}
size_t size() const {return size_;}
template<class Archive>
void save(Archive & ar, const unsigned int version) const {
ar << boost::serialization::make_nvp("size",size_);
for (size_t i=0; i<size_; ++i) ar << boost::serialization::make_nvp("data",p[i]);
}
template<class Archive>
void load(Archive & ar, const unsigned int version) {
ar >> size_;
assert (p==NULL);
p = new non_const_value_type[size_];
for (size_t i=0; i<size_; ++i) ar >> p[i];
}
BOOST_SERIALIZATION_SPLIT_MEMBER();
};
}}}}//namespace triqs::arrays
#undef TRACE_MEM_DEBUG
#endif