mirror of
https://github.com/triqs/dft_tools
synced 2024-11-01 03:33:50 +01:00
f2c7d449cc
for earlier commits, see TRIQS0.x repository.
60 lines
1.9 KiB
Python
60 lines
1.9 KiB
Python
|
|
################################################################################
|
|
#
|
|
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
#
|
|
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
|
|
#
|
|
# TRIQS is free software: you can redistribute it and/or modify it under the
|
|
# terms of the GNU General Public License as published by the Free Software
|
|
# Foundation, either version 3 of the License, or (at your option) any later
|
|
# version.
|
|
#
|
|
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
# details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
################################################################################
|
|
|
|
from numpy import array, arange
|
|
from math import pi
|
|
from cmath import sqrt, log
|
|
from pytriqs.gf.local import GfImFreq, GfReFreq
|
|
from pytriqs.gf.local.descriptors import Function
|
|
|
|
beta = 100 # Inverse temperature
|
|
L = 10 # Number of Matsubara frequencies used in the Pade approximation
|
|
eta = 0.01 # Imaginary frequency shift
|
|
|
|
## Test Green's functions ##
|
|
|
|
# Two Lorentzians
|
|
def GLorentz(z):
|
|
return 0.7/(z-2.6+0.3*1j) + 0.3/(z+3.4+0.1*1j)
|
|
|
|
# Semicircle
|
|
def GSC(z):
|
|
return 2.0*(z + sqrt(1-z**2)*(log(1-z) - log(-1+z))/pi)
|
|
|
|
# A superposition of GLorentz(z) and GSC(z) with equal weights
|
|
def G(z):
|
|
return 0.5*GLorentz(z) + 0.5*GSC(z)
|
|
|
|
# Matsubara GF
|
|
gm = GfImFreq(indices = [0], beta = beta, name = "gm")
|
|
gm <<= Function(G)
|
|
gm.tail.zero()
|
|
gm.tail[1] = array([[1.0]])
|
|
|
|
# Analytic continuation of gm
|
|
g_pade = GfReFreq(indices = [0], window = (-5.995, 5.995), n_points = 1200, name = "g_pade")
|
|
g_pade.set_from_pade(gm, n_points = L, freq_offset = eta)
|
|
|
|
from pytriqs.archive import HDFArchive
|
|
R = HDFArchive('pade.output.h5','w')
|
|
R['g_pade'] = g_pade
|