mirror of
https://github.com/triqs/dft_tools
synced 2025-01-12 14:08:24 +01:00
5805c7c3aa
This should fix the bug noticed by Leonid in off-diagonal elements of the density matrix. modified: triqs/gfs/local/functions.cpp
130 lines
4.4 KiB
C++
130 lines
4.4 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#include "functions.hpp"
|
|
#include <triqs/utility/legendre.hpp>
|
|
|
|
namespace triqs { namespace gfs {
|
|
|
|
dcomplex F(dcomplex a,double b,double Beta) {return -a/(1+exp(-Beta*b));}
|
|
using arrays::array;
|
|
|
|
//-------------------------------------------------------
|
|
// For Imaginary Matsubara Frequency functions
|
|
// ------------------------------------------------------
|
|
arrays::matrix<double> density( gf_view<imfreq> const & G) {
|
|
dcomplex I(0,1);
|
|
auto sh = G.data().shape().front_pop();
|
|
auto Beta = G.domain().beta;
|
|
local::tail_view t = G(freq_infty());
|
|
if (!t.is_decreasing_at_infinity()) TRIQS_RUNTIME_ERROR<<" density computation : Green Function is not as 1/omega or less !!!";
|
|
const size_t N1=sh[0], N2 = sh[1];
|
|
arrays::array<dcomplex,2> dens_part(sh), dens_tail(sh), dens(sh);
|
|
arrays::matrix<double> res(sh);
|
|
dens_part()=0;dens()=0;dens_tail()=0;
|
|
for (size_t n1=0; n1<N1;n1++)
|
|
for (size_t n2=0; n2<N2;n2++) {
|
|
dcomplex d= t(1)(n1,n2) , A=t(2)(n1,n2),B = t(3)(n1,n2) ;
|
|
double b1 = 0,b2 =1, b3 =-1;
|
|
dcomplex a1 = d-B, a2 = (A+B)/2, a3 = (B-A)/2;
|
|
for (auto & w : G.mesh()) dens_part(n1,n2)+= G[w](n1,n2) - (a1/(w - b1) + a2 / (w-b2) + a3/(w-b3));
|
|
dens_part(n1,n2) = dens_part(n1,n2)/Beta;
|
|
dens_tail(n1,n2) = d + F(a1,b1,Beta) + F(a2,b2,Beta)+ F(a3,b3,Beta);
|
|
// If the Green function are NOT complex, then one use the symmetry property
|
|
// fold the sum and get a factor 2
|
|
//double fact = (Green_Function_Are_Complex_in_time ? 1 : 2);
|
|
//dens_part(n1,n2) = dens_part(n1,n2)*(fact/Beta) + (d + F(a1,b1,Beta) + F(a2,b2,Beta)+ F(a3,b3,Beta));
|
|
//if (!Green_Function_Are_Complex_in_time) dens_part = 0+real(dens_part);
|
|
}
|
|
|
|
for (size_t n1=0; n1<N1;n1++)
|
|
for (size_t n2=n1; n2<N2;n2++) {
|
|
dens_part(n1,n2) = dens_part(n1,n2) + (G.mesh().positive_only()? ( real(dens_part(n2,n1)) - I * imag(dens_part(n2,n1)) ) : 0) + dens_tail(n1,n2);
|
|
dens_part(n2,n1) = real(dens_part(n1,n2)) - I * imag(dens_part(n1,n2));
|
|
}
|
|
|
|
for (size_t n1=0; n1<N1;n1++)
|
|
for (size_t n2=0; n2<N2;n2++) {
|
|
res(n1,n2) = real(dens_part(n1,n2));
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
double density(gf_view<imfreq, scalar_valued> const & g){
|
|
return density(reinterpret_scalar_valued_gf_as_matrix_valued(g))(0,0);
|
|
}
|
|
|
|
arrays::matrix<double> density( gf_view<legendre> const & gl) {
|
|
|
|
auto sh = gl.data().shape().front_pop();
|
|
arrays::matrix<double> res(sh);
|
|
res() = 0.0;
|
|
|
|
for (auto l : gl.mesh()) {
|
|
res -= sqrt(2*l.index()+1) * gl[l];
|
|
}
|
|
res /= gl.domain().beta;
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
// compute a tail from the Legendre GF
|
|
// this is Eq. 8 of our paper
|
|
local::tail_view get_tail(gf_const_view<legendre> gl, int size = 10, int omin = -1) {
|
|
|
|
auto sh = gl.data().shape().front_pop();
|
|
local::tail t(sh, size, omin);
|
|
t.data() = 0.0;
|
|
|
|
for (int p=1; p<=t.order_max(); p++)
|
|
for (auto l : gl.mesh())
|
|
t(p) += (triqs::utility::legendre_t(l.index(),p)/pow(gl.domain().beta,p)) * gl[l];
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
// Impose a discontinuity G(\tau=0)-G(\tau=\beta)
|
|
void enforce_discontinuity(gf_view<legendre> & gl, arrays::array_view<double,2> disc) {
|
|
|
|
double norm = 0.0;
|
|
arrays::vector<double> t(gl.data().shape()[0]);
|
|
for (int i=0; i<t.size(); ++i) {
|
|
t(i) = triqs::utility::legendre_t(i,1) / gl.domain().beta;
|
|
norm += t(i)*t(i);
|
|
}
|
|
|
|
arrays::array<double,2> corr(disc.shape()); corr() = 0;
|
|
for (auto l : gl.mesh()) {
|
|
corr += t(l.index()) * gl[l];
|
|
}
|
|
|
|
arrays::range R;
|
|
for (auto l : gl.mesh()) {
|
|
gl.data()(l.index(),R,R) += (disc - corr) * t(l.index()) / norm;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
}}
|