mirror of
https://github.com/triqs/dft_tools
synced 2025-01-13 22:36:03 +01:00
bdac3e159c
- little details : code cleaning, clang formatting, along with documentation writing for c++ gf. - separated the mesh in small class for better doc. - work on documentation : reorganize specialisation, ...
128 lines
3.5 KiB
ReStructuredText
128 lines
3.5 KiB
ReStructuredText
.. highlight:: c
|
|
|
|
.. _gf_imtime:
|
|
|
|
Matsubara imaginary time
|
|
==========================================================
|
|
|
|
This is a specialisation of :ref:`gf<gf_and_view>` for imaginary Matsubara time.
|
|
|
|
Synopsis
|
|
------------
|
|
|
|
.. code::
|
|
|
|
gf<imtime, Target, Opt>
|
|
|
|
The *Target* template parameter can take the following values :
|
|
|
|
+-------------------------+-----------------------------------------------------+
|
|
| Target | Meaning |
|
|
+=========================+=====================================================+
|
|
| scalar_valued | The function is scalar valued (double, complex...). |
|
|
+-------------------------+-----------------------------------------------------+
|
|
| matrix_valued [default] | The function is matrix valued. |
|
|
+-------------------------+-----------------------------------------------------+
|
|
|
|
Domain & mesh
|
|
----------------
|
|
|
|
The domain is the set of real numbers between 0 and :math:`\beta`
|
|
since the function is periodic (resp. antiperiodic) for bosons (resp. fermions), i.e.
|
|
|
|
* :math:`G(\tau+\beta)=-G(\tau)` for fermions
|
|
* :math:`G(\tau+\beta)=G(\tau)` for bosons.
|
|
|
|
The domain is implemented in the class :doxy:`matsubara_time_domain<triqs::gfs::matsubara_domain>`.
|
|
|
|
The mesh is :doxy:`matsubara_time_mesh<triqs::gfs::matsubara_time_mesh>`.
|
|
|
|
|
|
Singularity
|
|
-------------
|
|
|
|
The singularity is a high frequency expansion, :ref:`gf_tail`.
|
|
|
|
|
|
Evaluation method
|
|
---------------------
|
|
|
|
* Use a linear interpolation between the two closest point of the mesh.
|
|
|
|
* Return type :
|
|
|
|
* If Target==scalar_valued : a complex
|
|
* If Target==matrix_valued : an object modeling ImmutableMatrix concept.
|
|
|
|
* When the point is outside of the mesh, the evaluation of the gf returns :
|
|
|
|
* the evaluation of the high frequency tail if no_tail is not set.
|
|
* 0 otherwise
|
|
|
|
|
|
Data storage
|
|
---------------
|
|
|
|
* If Target==scalar_valued :
|
|
|
|
* `data_t` : 1d array of complex<double>.
|
|
|
|
* g.data()(i) is the value of g for the i-th point of the mesh.
|
|
|
|
* If Target==matrix_valued :
|
|
|
|
* `data_t` : 3d array (C ordered) of complex<double>.
|
|
|
|
* g.data()(i, range(), range()) is the value of g for the i-th point of the mesh.
|
|
|
|
|
|
TO DO : complex OR DOUBLE : FIX and document !!
|
|
|
|
HDF5 storage convention
|
|
---------------------------
|
|
|
|
h5 tag : `ImTime`
|
|
|
|
|
|
Examples
|
|
---------
|
|
|
|
.. compileblock::
|
|
|
|
#include <triqs/gfs.hpp>
|
|
using namespace triqs::gfs;
|
|
int main(){
|
|
double beta=10, a = 1;
|
|
int n_times=1000;
|
|
|
|
// --- first a matrix_valued function ------------
|
|
|
|
// First give information to build the mesh, second to build the target
|
|
auto g1 = gf<imtime, matrix_valued, no_tail> { {beta,Fermion,n_times}, {1,1} };
|
|
|
|
// or a more verbose/explicit form ...
|
|
auto g2 = gf<imtime> { gf_mesh<imtime>{beta,Fermion,n_times}, make_shape(1,1) };
|
|
|
|
// Filling the gf with something... COMMENT HERE : ok only because of no_tail
|
|
triqs::clef::placeholder<0> tau_;
|
|
g1(tau_) << exp ( - a * tau_) / (1 + exp(- beta * a));
|
|
|
|
// evaluation at tau=3.2
|
|
std::cout << triqs::arrays::make_matrix(g1(3.2)) << " == "<< exp ( - a * 3.2) / (1 + exp(- beta * a)) << std::endl;
|
|
|
|
// --- a scalar_valued function ------------
|
|
|
|
// same a before, but without the same of the target space ...
|
|
auto g3 = gf<imtime, scalar_valued, no_tail> { {beta,Fermion,n_times} };
|
|
|
|
g3(tau_) << exp ( - a * tau_) / (1 + exp(- beta * a));
|
|
|
|
// evaluation at tau=3.2
|
|
std::cout << g3(3.2) << " == "<< exp ( - a * 3.2) / (1 + exp(- beta * a)) << std::endl;
|
|
}
|
|
|
|
|
|
|
|
|
|
|