mirror of
https://github.com/triqs/dft_tools
synced 2024-12-27 06:43:40 +01:00
d4c96a9d93
-> are going to be replaced soon anyway ...
121 lines
5.4 KiB
C++
121 lines
5.4 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#ifndef TRIQS_GF_RE_IM_TIMES_H
|
|
#define TRIQS_GF_RE_IM_TIMES_H
|
|
#include "./tools.hpp"
|
|
#include "./gf.hpp"
|
|
#include "./retime.hpp"
|
|
#include "./imtime.hpp"
|
|
#include "./meshes/product.hpp"
|
|
|
|
namespace triqs { namespace gfs {
|
|
|
|
struct re_im_time {};
|
|
|
|
// the gf_mesh
|
|
template<typename Opt> struct gf_mesh<re_im_time,Opt> : mesh_product<gf_mesh<retime,Opt>,gf_mesh<imtime,Opt>> {
|
|
typedef gf_mesh<retime,Opt> m1_t;
|
|
typedef gf_mesh<imtime,Opt> m2_t;
|
|
typedef mesh_product<m1_t,m2_t> B;
|
|
gf_mesh () = default;
|
|
gf_mesh (double tmin, double tmax, size_t nt, double beta, statistic_enum S, size_t ntau, mesh_kind mk=full_bins) :
|
|
B {gf_mesh<retime,Opt>(tmin,tmax,nt), gf_mesh<imtime,Opt>(beta,S, ntau, mk)} {}
|
|
};
|
|
|
|
namespace gfs_implementation {
|
|
|
|
// singularity
|
|
//template<typename Opt> struct singularity<re_im_time, scalar_valued, Opt> { typedef gf<retime,scalar_valued> type;};
|
|
|
|
// h5 name
|
|
template<typename Opt> struct h5_name<re_im_time,scalar_valued,Opt> { static std::string invoke(){ return "GfReImTime";}};
|
|
|
|
/// --------------------------- data access ---------------------------------
|
|
|
|
template<typename Opt> struct data_proxy<re_im_time,scalar_valued,Opt> : data_proxy_array<std::complex<double>,1> {};
|
|
|
|
/// --------------------------- evaluator ---------------------------------
|
|
template<typename Opt>
|
|
struct evaluator<re_im_time,scalar_valued,Opt> {
|
|
static constexpr int arity = 2;
|
|
template<typename G>
|
|
std::complex<double> operator() (G const * g, double t, double tau) const {
|
|
double beta = std::get<1>(g->mesh().components()).domain().beta;
|
|
int p = std::floor(tau/beta);
|
|
tau -= p*beta;
|
|
size_t nr,ni; double wr,wi; bool in;
|
|
std::tie(in, nr, wr) = windowing( std::get<0>(g->mesh().components()),t);
|
|
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds, tmax=" << std::get<0>(g->mesh().components()).x_max() << ", tmin=" << std::get<0>(g->mesh().components()).x_min() << "here, t=" <<t;
|
|
std::tie(in, ni, wi) = windowing( std::get<1>(g->mesh().components()),tau);
|
|
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds, taumax=" << std::get<1>(g->mesh().components()).x_max()<< ", taumin=" << std::get<1>(g->mesh().components()).x_min() << "here, tau=" <<tau;
|
|
auto gg = on_mesh(*g); //[g]( size_t nr, size_t ni) {return g->on_mesh(nr,ni);}; //data( g->mesh().index_to_linear(nr,ni));
|
|
auto res = (1-wr) * ( (1-wi) * gg(nr,ni) + wi * gg(nr,ni+1)) + wr * ( (1-wi) * gg(nr+1,ni) + wi * gg(nr+1,ni+1));
|
|
return ((std::get<1>(g->mesh().components()).domain().statistic == Fermion) && (p%2==1) ? -res : res);
|
|
}
|
|
};
|
|
|
|
// ------------------------------- Factories --------------------------------------------------
|
|
|
|
template<typename Opt> struct factories<re_im_time, scalar_valued,Opt> {
|
|
typedef gf<re_im_time, scalar_valued,Opt> gf_t;
|
|
|
|
template<typename MeshType>
|
|
static gf_t make_gf(MeshType && m) {
|
|
typename gf_t::data_regular_t A(m.size());
|
|
A() =0;
|
|
return gf_t (m, std::move(A), nothing(), nothing() ) ;
|
|
}
|
|
|
|
static gf_t make_gf(double tmin, double tmax, size_t nt, double beta, statistic_enum S, size_t ntau, mesh_kind mk=full_bins) {
|
|
auto m = gf_mesh<re_im_time,Opt>(tmin,tmax, nt, beta, S, ntau, mk);
|
|
typename gf_t::data_regular_t A(m.size());
|
|
A() =0;
|
|
return gf_t (m, std::move(A), nothing(), nothing());
|
|
//return gf_t (m, std::move(A), make_gf<retime,scalar_valued>(tmin, tmax, nt), nothing());
|
|
}
|
|
};
|
|
|
|
} // gfs_implementation
|
|
|
|
// CHANGE THIS NAME !!!
|
|
template<typename RHS, bool V, typename Variable, typename Target, typename Opt >
|
|
void assign_from_expression (gf_impl<Variable,Target,Opt,V> const &, RHS) {}
|
|
|
|
//slices
|
|
inline gf_view<retime,scalar_valued> slice_mesh_imtime (gf_view<re_im_time,scalar_valued> g, size_t index) {
|
|
auto arr = reinterpret_linear_array(g.mesh(),g.data()); // view it as a 2d array
|
|
return { std::get<0>(g.mesh().components()), arr(arrays::range(), index), local::tail(1,1), nothing() };
|
|
}
|
|
|
|
/* gf_view<imtime,scalar_valued> slice_mesh_retime ( gf_view<re_im_time,scalar_valued> g, size_t index) {
|
|
auto arr = reinterpret_linear_array(g.mesh(),g.data()); // view it as a 2d array
|
|
return { std::get<1>(g.mesh().components()), arr(index, arrays::range()), g.singularity().singularity(), nothing() };
|
|
}
|
|
*/
|
|
//
|
|
// gf_view<retime,scalar_valued> slice_meshes ( gf_view<re_im_time,scalar_valued> g, size_t index) {
|
|
// return { std::get<0>(g.mesh().components()), g.data()(arrays::range(), index), tail ( g.singularity(.......) ), g.symmetry()}
|
|
// }
|
|
|
|
}}
|
|
#endif
|
|
|