3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 03:33:50 +01:00
dft_tools/triqs/gfs/imfreq.hpp
Olivier Parcollet b45045e81c gfs: change the name of the mesh -> gf_mesh for gcc
gcc has a pb because the template mesh<Variable,Opt>
has the name same as the gf mesh method (!).
Clang is fine however on this...

Solution : rename the template mesh<...> to gf_mesh...
Not very elegant, but ok.
2013-08-27 14:20:50 +02:00

112 lines
5.0 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_GF_MATSUBARA_FREQ_H
#define TRIQS_GF_MATSUBARA_FREQ_H
#include "./tools.hpp"
#include "./gf.hpp"
#include "./local/tail.hpp"
#include "./domains/matsubara.hpp"
#include "./meshes/linear.hpp"
namespace triqs { namespace gfs {
struct imfreq {};
template<typename Opt> struct gf_mesh<imfreq,Opt> : linear_mesh<matsubara_domain<true>> {
typedef linear_mesh<matsubara_domain<true>> B;
static double m1(double beta) { return std::acos(-1)/beta;}
gf_mesh() = default;
gf_mesh (double beta, statistic_enum S, size_t Nmax = 1025) :
B(typename B::domain_t(beta,S), S==Fermion?m1(beta):0, S==Fermion?(2*Nmax+1)*m1(beta): 2*Nmax*m1(beta), Nmax, without_last){}
};
namespace gfs_implementation {
//singularity
template<typename Opt> struct singularity<imfreq,matrix_valued,Opt> { typedef local::tail type;};
template<typename Opt> struct singularity<imfreq,scalar_valued,Opt> { typedef local::tail type;};
//h5 name
template<typename Opt> struct h5_name<imfreq,matrix_valued,Opt> { static std::string invoke(){ return "ImFreq";}};
/// --------------------------- evaluator ---------------------------------
template<typename Opt, typename Target>
struct evaluator<imfreq,Target,Opt> {
static constexpr int arity = 1;
typedef typename std::conditional < std::is_same<Target, matrix_valued>::value, arrays::matrix_view<std::complex<double>>, std::complex<double>>::type rtype;
template<typename G>
rtype operator() (G const * g, long n) const {return g->data()(n, arrays::ellipsis()); }
// crucial because the mesh_point is cast in a complex, not an int !
template<typename G>
rtype operator() (G const * g, linear_mesh<matsubara_domain<true>>::mesh_point_t const & p) const { return (*this)(g,p.index());}
template<typename G>
local::tail_view operator()(G const * g, freq_infty const &) const {return g->singularity();}
};
/// --------------------------- data access ---------------------------------
template<typename Opt> struct data_proxy<imfreq,matrix_valued,Opt> : data_proxy_array<std::complex<double>,3> {};
template<typename Opt> struct data_proxy<imfreq,scalar_valued,Opt> : data_proxy_array<std::complex<double>,1> {};
// ------------------------------- Factories --------------------------------------------------
// matrix_valued
template<typename Opt> struct factories<imfreq,matrix_valued,Opt> {
typedef gf<imfreq,matrix_valued,Opt> gf_t;
template<typename MeshType>
static gf_t make_gf(MeshType && m, tqa::mini_vector<size_t,2> shape, local::tail_view const & t) {
typename gf_t::data_regular_t A(shape.front_append(m.size())); A() =0;
return gf_t ( std::forward<MeshType>(m), std::move(A), t, nothing() ) ;
}
static gf_t make_gf(double beta, statistic_enum S, tqa::mini_vector<size_t,2> shape) {
return make_gf(gf_mesh<imfreq,Opt>(beta,S), shape, local::tail(shape));
}
static gf_t make_gf(double beta, statistic_enum S, tqa::mini_vector<size_t,2> shape, size_t Nmax) {
return make_gf(gf_mesh<imfreq,Opt>(beta,S,Nmax), shape, local::tail(shape));
}
static gf_t make_gf(double beta, statistic_enum S, tqa::mini_vector<size_t,2> shape, size_t Nmax, local::tail_view const & t) {
return make_gf(gf_mesh<imfreq,Opt>(beta,S,Nmax), shape, t);
}
};
// scalar_valued
template<typename Opt> struct factories<imfreq,scalar_valued,Opt> {
typedef gf<imfreq,scalar_valued,Opt> gf_t;
template<typename MeshType>
static gf_t make_gf(MeshType && m, local::tail_view const & t) {
typename gf_t::data_regular_t A(m.size()); A() =0;
return gf_t ( std::forward<MeshType>(m), std::move(A), t, nothing() ) ;
}
static gf_t make_gf(double beta, statistic_enum S) {
return make_gf(gf_mesh<imfreq,Opt>(beta,S), local::tail(tqa::mini_vector<size_t,2> (1,1)));
}
static gf_t make_gf(double beta, statistic_enum S, size_t Nmax) {
return make_gf(gf_mesh<imfreq,Opt>(beta,S,Nmax), local::tail(tqa::mini_vector<size_t,2> (1,1)));
}
static gf_t make_gf(double beta, statistic_enum S, size_t Nmax, local::tail_view const & t) {
return make_gf(gf_mesh<imfreq,Opt>(beta,S,Nmax), t);
}
};
} // gfs_implementation
}}
#endif