3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-07 03:43:12 +01:00
dft_tools/test/python/blockstructure.py
Alexander Hampel 11d394fd5b synchronize dfttools with app4triqs structure
* moved the plovasp C++ code to c++/triqs_dft_tools/converters/vasp
* added global header triqs_dft_tools/triqs_dft_tools.hpp
* python dir based on single cmakelist file
* registered C++ tests for plovasp
* corrected imports for py3 tests for plovasp
* corrected block order in sigma_from_file and srvo3_Gloc
* exchanged ref files for sigma_from_file, srvo3_Gloc, SrVO3.ref.h5
* moved vasp converter bash scripts from dir shells to bin dir
2020-06-10 17:45:53 +02:00

85 lines
3.1 KiB
Python

from triqs_dft_tools.sumk_dft import *
from triqs.utility.h5diff import h5diff
from triqs.gf import *
from triqs.utility.comparison_tests import assert_block_gfs_are_close
from triqs_dft_tools.block_structure import BlockStructure
SK = SumkDFT('blockstructure.in.h5',use_dft_blocks=True)
original_bs = SK.block_structure
# check pick_gf_struct_solver
pick1 = original_bs.copy()
pick1.pick_gf_struct_solver([{'up_0': [1], 'up_1': [0], 'down_1': [0]}])
# check loading a block_structure from file
SK.block_structure = SK.load(['block_structure'],'mod')[0]
assert SK.block_structure == pick1, 'loading SK block structure from file failed'
# check SumkDFT backward compatibility
sk_pick1 = BlockStructure(gf_struct_sumk = SK.gf_struct_sumk,
gf_struct_solver = SK.gf_struct_solver,
solver_to_sumk = SK.solver_to_sumk,
sumk_to_solver = SK.sumk_to_solver,
solver_to_sumk_block = SK.solver_to_sumk_block,
deg_shells = SK.deg_shells)
assert sk_pick1 == pick1, 'constructing block structure from SumkDFT properties failed'
# check pick_gf_struct_sumk
pick2 = original_bs.copy()
pick2.pick_gf_struct_sumk([{'up': [1, 2], 'down': [0,1]}])
# check map_gf_struct_solver
mapping = [{ ('down_0', 0):('down', 0),
('down_0', 1):('down', 2),
('down_1', 0):('down', 1),
('up_0', 0) :('down_1', 0),
('up_0', 1) :('up_0', 0) }]
map1 = original_bs.copy()
map1.map_gf_struct_solver(mapping)
# check create_gf
G1 = original_bs.create_gf(beta=40,n_points=3)
i = 1
for block,gf in G1:
gf << SemiCircular(i)
i+=1
# check approximate_as_diagonal
offd = original_bs.copy()
offd.approximate_as_diagonal()
# check map_gf_struct_solver
G2 = map1.convert_gf(G1,original_bs,beta=40,n_points=3,show_warnings=False)
# check full_structure
full = BlockStructure.full_structure([{'up_0': [0, 1], 'up_1': [0], 'down_1': [0], 'down_0': [0, 1]}],None)
# check __eq__
assert full==full, 'equality not correct (equal structures not equal)'
assert pick1==pick1, 'equality not correct (equal structures not equal)'
assert pick1!=pick2, 'equality not correct (different structures not different)'
assert original_bs!=offd, 'equality not correct (different structures not different)'
if mpi.is_master_node():
with HDFArchive('blockstructure.out.h5','w') as ar:
ar['original_bs'] = original_bs
ar['pick1'] = pick1
ar['pick2'] = pick2
ar['map1'] = map1
ar['offd'] = offd
ar['G1'] = G1
ar['G2'] = G2
ar['full'] = full
# cannot use h5diff because BlockStructure testing is not implemented
# there (and seems difficult to implement because it would mix triqs
# and dft_tools)
with HDFArchive('blockstructure.out.h5','r') as ar,\
HDFArchive('blockstructure.ref.h5','r') as ar2:
for k in ar2:
if isinstance(ar[k],BlockGf):
assert_block_gfs_are_close(ar[k],ar2[k],1.e-6)
else:
assert ar[k]==ar2[k], '{} not equal'.format(k)