mirror of
https://github.com/triqs/dft_tools
synced 2024-12-22 12:23:41 +01:00
425 lines
21 KiB
Python
425 lines
21 KiB
Python
|
|
################################################################################
|
|
#
|
|
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
#
|
|
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
|
#
|
|
# TRIQS is free software: you can redistribute it and/or modify it under the
|
|
# terms of the GNU General Public License as published by the Free Software
|
|
# Foundation, either version 3 of the License, or (at your option) any later
|
|
# version.
|
|
#
|
|
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
# details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
################################################################################
|
|
|
|
from types import *
|
|
import numpy
|
|
from pytriqs.archive import *
|
|
import pytriqs.utility.mpi as mpi
|
|
from converter_tools import *
|
|
|
|
class Wien2kConverter(ConverterTools):
|
|
"""
|
|
Conversion from Wien2k output to an hdf5 file that can be used as input for the SumkLDA class.
|
|
"""
|
|
|
|
def __init__(self, filename, lda_subgrp = 'lda_input', symmcorr_subgrp = 'lda_symmcorr_input',
|
|
parproj_subgrp='lda_parproj_input', symmpar_subgrp='lda_symmpar_input',
|
|
bands_subgrp = 'lda_bands_input', repacking = False):
|
|
"""
|
|
Init of the class. Variable filename gives the root of all filenames, e.g. case.ctqmcout, case.h5, and so on.
|
|
"""
|
|
|
|
assert type(filename)==StringType, "Please provide the LDA files' base name as a string."
|
|
self.hdf_file = filename+'.h5'
|
|
self.lda_file = filename+'.ctqmcout'
|
|
self.symmcorr_file = filename+'.symqmc'
|
|
self.parproj_file = filename+'.parproj'
|
|
self.symmpar_file = filename+'.sympar'
|
|
self.band_file = filename+'.outband'
|
|
self.lda_subgrp = lda_subgrp
|
|
self.symmcorr_subgrp = symmcorr_subgrp
|
|
self.parproj_subgrp = parproj_subgrp
|
|
self.symmpar_subgrp = symmpar_subgrp
|
|
self.bands_subgrp = bands_subgrp
|
|
self.fortran_to_replace = {'D':'E'}
|
|
|
|
# Checks if h5 file is there and repacks it if wanted:
|
|
import os.path
|
|
if (os.path.exists(self.hdf_file) and repacking):
|
|
ConverterTools.__repack(self)
|
|
|
|
|
|
|
|
def convert_dmft_input(self):
|
|
"""
|
|
Reads the input files, and stores the data in the HDFfile
|
|
"""
|
|
|
|
# Read and write only on the master node
|
|
if not (mpi.is_master_node()): return
|
|
mpi.report("Reading input from %s..."%self.lda_file)
|
|
|
|
# R is a generator : each R.Next() will return the next number in the file
|
|
R = ConverterTools.read_fortran_file(self,self.lda_file,self.fortran_to_replace)
|
|
try:
|
|
energy_unit = R.next() # read the energy convertion factor
|
|
n_k = int(R.next()) # read the number of k points
|
|
k_dep_projection = 1
|
|
SP = int(R.next()) # flag for spin-polarised calculation
|
|
SO = int(R.next()) # flag for spin-orbit calculation
|
|
charge_below = R.next() # total charge below energy window
|
|
density_required = R.next() # total density required, for setting the chemical potential
|
|
symm_op = 1 # Use symmetry groups for the k-sum
|
|
|
|
# the information on the non-correlated shells is not important here, maybe skip:
|
|
n_shells = int(R.next()) # number of shells (e.g. Fe d, As p, O p) in the unit cell,
|
|
# corresponds to index R in formulas
|
|
shells = [ [ int(R.next()) for i in range(4) ] for icrsh in range(n_shells) ] # reads iatom, sort, l, dim
|
|
|
|
n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
|
# corresponds to index R in formulas
|
|
# now read the information about the shells:
|
|
corr_shells = [ [ int(R.next()) for i in range(6) ] for icrsh in range(n_corr_shells) ] # reads iatom, sort, l, dim, SO flag, irep
|
|
|
|
ConverterTools.inequiv_shells(self,corr_shells) # determine the number of inequivalent correlated shells, needed for further reading
|
|
|
|
use_rotations = 1
|
|
rot_mat = [numpy.identity(corr_shells[icrsh][3],numpy.complex_) for icrsh in xrange(n_corr_shells)]
|
|
|
|
# read the matrices
|
|
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
|
|
|
for icrsh in xrange(n_corr_shells):
|
|
for i in xrange(corr_shells[icrsh][3]): # read real part:
|
|
for j in xrange(corr_shells[icrsh][3]):
|
|
rot_mat[icrsh][i,j] = R.next()
|
|
for i in xrange(corr_shells[icrsh][3]): # read imaginary part:
|
|
for j in xrange(corr_shells[icrsh][3]):
|
|
rot_mat[icrsh][i,j] += 1j * R.next()
|
|
|
|
if (SP==1): # read time inversion flag:
|
|
rot_mat_time_inv[icrsh] = int(R.next())
|
|
|
|
# Read here the info for the transformation of the basis:
|
|
n_reps = [1 for i in range(self.n_inequiv_corr_shells)]
|
|
dim_reps = [0 for i in range(self.n_inequiv_corr_shells)]
|
|
T = []
|
|
for icrsh in range(self.n_inequiv_corr_shells):
|
|
n_reps[icrsh] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
|
|
dim_reps[icrsh] = [int(R.next()) for i in range(n_reps[icrsh])] # dimensions of the subsets
|
|
|
|
# The transformation matrix:
|
|
# is of dimension 2l+1 without SO, and 2*(2l+1) with SO!
|
|
ll = 2*corr_shells[self.invshellmap[icrsh]][2]+1
|
|
lmax = ll * (corr_shells[self.invshellmap[icrsh]][4] + 1)
|
|
T.append(numpy.zeros([lmax,lmax],numpy.complex_))
|
|
|
|
# now read it from file:
|
|
for i in xrange(lmax):
|
|
for j in xrange(lmax):
|
|
T[icrsh][i,j] = R.next()
|
|
for i in xrange(lmax):
|
|
for j in xrange(lmax):
|
|
T[icrsh][i,j] += 1j * R.next()
|
|
|
|
# Spin blocks to be read:
|
|
n_spin_blocs = SP + 1 - SO
|
|
|
|
# read the list of n_orbitals for all k points
|
|
n_orbitals = numpy.zeros([n_k,n_spin_blocs],numpy.int)
|
|
for isp in range(n_spin_blocs):
|
|
for ik in xrange(n_k):
|
|
n_orbitals[ik,isp] = int(R.next())
|
|
|
|
# Initialise the projectors:
|
|
proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max(numpy.array(corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)
|
|
|
|
# Read the projectors from the file:
|
|
for ik in xrange(n_k):
|
|
for icrsh in range(n_corr_shells):
|
|
no = corr_shells[icrsh][3]
|
|
# first Real part for BOTH spins, due to conventions in dmftproj:
|
|
for isp in range(n_spin_blocs):
|
|
for i in xrange(no):
|
|
for j in xrange(n_orbitals[ik][isp]):
|
|
proj_mat[ik,isp,icrsh,i,j] = R.next()
|
|
# now Imag part:
|
|
for isp in range(n_spin_blocs):
|
|
for i in xrange(no):
|
|
for j in xrange(n_orbitals[ik][isp]):
|
|
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
|
|
|
|
# now define the arrays for weights and hopping ...
|
|
bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
|
|
hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
|
|
|
|
# weights in the file
|
|
for ik in xrange(n_k) : bz_weights[ik] = R.next()
|
|
|
|
# if the sum over spins is in the weights, take it out again!!
|
|
sm = sum(bz_weights)
|
|
bz_weights[:] /= sm
|
|
|
|
# Grab the H
|
|
# we use now the convention of a DIAGONAL Hamiltonian -- convention for Wien2K.
|
|
for isp in range(n_spin_blocs):
|
|
for ik in xrange(n_k) :
|
|
no = n_orbitals[ik,isp]
|
|
for i in xrange(no):
|
|
hopping[ik,isp,i,i] = R.next() * energy_unit
|
|
|
|
# keep some things that we need for reading parproj:
|
|
things_to_set = ['n_shells','shells','n_corr_shells','corr_shells','n_spin_blocs','n_orbitals','n_k','SO','SP','energy_unit']
|
|
for it in things_to_set: setattr(self,it,locals()[it])
|
|
except StopIteration : # a more explicit error if the file is corrupted.
|
|
raise "Wien2k_converter : reading file lda_file failed!"
|
|
|
|
R.close()
|
|
# Reading done!
|
|
|
|
# Save it to the HDF:
|
|
ar = HDFArchive(self.hdf_file,'a')
|
|
if not (self.lda_subgrp in ar): ar.create_group(self.lda_subgrp)
|
|
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
|
things_to_save = ['energy_unit','n_k','k_dep_projection','SP','SO','charge_below','density_required',
|
|
'symm_op','n_shells','shells','n_corr_shells','corr_shells','use_rotations','rot_mat',
|
|
'rot_mat_time_inv','n_reps','dim_reps','T','n_orbitals','proj_mat','bz_weights','hopping']
|
|
for it in things_to_save: ar[self.lda_subgrp][it] = locals()[it]
|
|
del ar
|
|
|
|
# Symmetries are used, so now convert symmetry information for *correlated* orbitals:
|
|
self.convert_symmetry_input(orbits=corr_shells,symm_file=self.symmcorr_file,symm_subgrp=self.symmcorr_subgrp,SO=self.SO,SP=self.SP)
|
|
|
|
|
|
def convert_parproj_input(self):
|
|
"""
|
|
Reads the input for the partial charges projectors from case.parproj, and stores it in the symmpar_subgrp
|
|
group in the HDF5.
|
|
"""
|
|
|
|
if not (mpi.is_master_node()): return
|
|
mpi.report("Reading parproj input from %s..."%self.parproj_file)
|
|
|
|
dens_mat_below = [ [numpy.zeros([self.shells[ish][3],self.shells[ish][3]],numpy.complex_) for ish in range(self.n_shells)]
|
|
for isp in range(self.n_spin_blocs) ]
|
|
|
|
R = ConverterTools.read_fortran_file(self,self.parproj_file,self.fortran_to_replace)
|
|
|
|
n_parproj = [int(R.next()) for i in range(self.n_shells)]
|
|
n_parproj = numpy.array(n_parproj)
|
|
|
|
# Initialise P, here a double list of matrices:
|
|
proj_mat_pc = numpy.zeros([self.n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max(numpy.array(self.shells)[:,3]),max(self.n_orbitals)],numpy.complex_)
|
|
|
|
rot_mat_all = [numpy.identity(self.shells[ish][3],numpy.complex_) for ish in xrange(self.n_shells)]
|
|
rot_mat_all_time_inv = [0 for i in range(self.n_shells)]
|
|
|
|
for ish in range(self.n_shells):
|
|
# read first the projectors for this orbital:
|
|
for ik in xrange(self.n_k):
|
|
for ir in range(n_parproj[ish]):
|
|
|
|
for isp in range(self.n_spin_blocs):
|
|
for i in xrange(self.shells[ish][3]): # read real part:
|
|
for j in xrange(self.n_orbitals[ik][isp]):
|
|
proj_mat_pc[ik,isp,ish,ir,i,j] = R.next()
|
|
|
|
for isp in range(self.n_spin_blocs):
|
|
for i in xrange(self.shells[ish][3]): # read imaginary part:
|
|
for j in xrange(self.n_orbitals[ik][isp]):
|
|
proj_mat_pc[ik,isp,ish,ir,i,j] += 1j * R.next()
|
|
|
|
|
|
# now read the Density Matrix for this orbital below the energy window:
|
|
for isp in range(self.n_spin_blocs):
|
|
for i in xrange(self.shells[ish][3]): # read real part:
|
|
for j in xrange(self.shells[ish][3]):
|
|
dens_mat_below[isp][ish][i,j] = R.next()
|
|
for isp in range(self.n_spin_blocs):
|
|
for i in xrange(self.shells[ish][3]): # read imaginary part:
|
|
for j in xrange(self.shells[ish][3]):
|
|
dens_mat_below[isp][ish][i,j] += 1j * R.next()
|
|
if (self.SP==0): dens_mat_below[isp][ish] /= 2.0
|
|
|
|
# Global -> local rotation matrix for this shell:
|
|
for i in xrange(self.shells[ish][3]): # read real part:
|
|
for j in xrange(self.shells[ish][3]):
|
|
rot_mat_all[ish][i,j] = R.next()
|
|
for i in xrange(self.shells[ish][3]): # read imaginary part:
|
|
for j in xrange(self.shells[ish][3]):
|
|
rot_mat_all[ish][i,j] += 1j * R.next()
|
|
|
|
if (self.SP):
|
|
rot_mat_all_time_inv[ish] = int(R.next())
|
|
|
|
R.close()
|
|
# Reading done!
|
|
|
|
# Save it to the HDF:
|
|
ar = HDFArchive(self.hdf_file,'a')
|
|
if not (self.parproj_subgrp in ar): ar.create_group(self.parproj_subgrp)
|
|
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
|
things_to_save = ['dens_mat_below','n_parproj','proj_mat_pc','rot_mat_all','rot_mat_all_time_inv']
|
|
for it in things_to_save: ar[self.parproj_subgrp][it] = locals()[it]
|
|
del ar
|
|
|
|
# Symmetries are used, so now convert symmetry information for *all* orbitals:
|
|
self.convert_symmetry_input(orbits=self.shells,symm_file=self.symmpar_file,symm_subgrp=self.symmpar_subgrp,SO=self.SO,SP=self.SP)
|
|
|
|
|
|
def convert_bands_input(self):
|
|
"""
|
|
Converts the input for momentum resolved spectral functions, and stores it in bands_subgrp in the
|
|
HDF5.
|
|
"""
|
|
|
|
if not (mpi.is_master_node()): return
|
|
mpi.report("Reading bands input from %s..."%self.band_file)
|
|
|
|
R = ConverterTools.read_fortran_file(self,self.band_file,self.fortran_to_replace)
|
|
try:
|
|
n_k = int(R.next())
|
|
|
|
# read the list of n_orbitals for all k points
|
|
n_orbitals = numpy.zeros([n_k,self.n_spin_blocs],numpy.int)
|
|
for isp in range(self.n_spin_blocs):
|
|
for ik in xrange(n_k):
|
|
n_orbitals[ik,isp] = int(R.next())
|
|
|
|
# Initialise the projectors:
|
|
proj_mat = numpy.zeros([n_k,self.n_spin_blocs,self.n_corr_shells,max(numpy.array(self.corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)
|
|
|
|
# Read the projectors from the file:
|
|
for ik in xrange(n_k):
|
|
for icrsh in range(self.n_corr_shells):
|
|
no = self.corr_shells[icrsh][3]
|
|
# first Real part for BOTH spins, due to conventions in dmftproj:
|
|
for isp in range(self.n_spin_blocs):
|
|
for i in xrange(no):
|
|
for j in xrange(n_orbitals[ik,isp]):
|
|
proj_mat[ik,isp,icrsh,i,j] = R.next()
|
|
# now Imag part:
|
|
for isp in range(self.n_spin_blocs):
|
|
for i in xrange(no):
|
|
for j in xrange(n_orbitals[ik,isp]):
|
|
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
|
|
|
|
hopping = numpy.zeros([n_k,self.n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
|
|
|
|
# Grab the H
|
|
# we use now the convention of a DIAGONAL Hamiltonian!!!!
|
|
for isp in range(self.n_spin_blocs):
|
|
for ik in xrange(n_k) :
|
|
no = n_orbitals[ik,isp]
|
|
for i in xrange(no):
|
|
hopping[ik,isp,i,i] = R.next() * self.energy_unit
|
|
|
|
# now read the partial projectors:
|
|
n_parproj = [int(R.next()) for i in range(self.n_shells)]
|
|
n_parproj = numpy.array(n_parproj)
|
|
|
|
# Initialise P, here a double list of matrices:
|
|
proj_mat_pc = numpy.zeros([n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max(numpy.array(self.shells)[:,3]),max(n_orbitals)],numpy.complex_)
|
|
|
|
|
|
for ish in range(self.n_shells):
|
|
|
|
for ik in xrange(n_k):
|
|
for ir in range(n_parproj[ish]):
|
|
for isp in range(self.n_spin_blocs):
|
|
|
|
for i in xrange(self.shells[ish][3]): # read real part:
|
|
for j in xrange(n_orbitals[ik,isp]):
|
|
proj_mat_pc[ik,isp,ish,ir,i,j] = R.next()
|
|
|
|
for i in xrange(self.shells[ish][3]): # read imaginary part:
|
|
for j in xrange(n_orbitals[ik,isp]):
|
|
proj_mat_pc[ik,isp,ish,ir,i,j] += 1j * R.next()
|
|
|
|
except StopIteration : # a more explicit error if the file is corrupted.
|
|
raise "Wien2k_converter : reading file band_file failed!"
|
|
|
|
R.close()
|
|
# Reading done!
|
|
|
|
# Save it to the HDF:
|
|
ar = HDFArchive(self.hdf_file,'a')
|
|
if not (self.bands_subgrp in ar): ar.create_group(self.bands_subgrp)
|
|
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
|
things_to_save = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_pc']
|
|
for it in things_to_save: ar[self.bands_subgrp][it] = locals()[it]
|
|
del ar
|
|
|
|
|
|
|
|
def convert_symmetry_input(self, orbits, symm_file, symm_subgrp, SO, SP):
|
|
"""
|
|
Reads input for the symmetrisations from symm_file, which is case.sympar or case.symqmc.
|
|
"""
|
|
|
|
if not (mpi.is_master_node()): return
|
|
mpi.report("Reading symmetry input from %s..."%symm_file)
|
|
|
|
n_orbits = len(orbits)
|
|
|
|
R = ConverterTools.read_fortran_file(self,symm_file,self.fortran_to_replace)
|
|
|
|
try:
|
|
n_s = int(R.next()) # Number of symmetry operations
|
|
n_atoms = int(R.next()) # number of atoms involved
|
|
perm = [ [int(R.next()) for i in xrange(n_atoms)] for j in xrange(n_s) ] # list of permutations of the atoms
|
|
if SP:
|
|
time_inv = [ int(R.next()) for j in xrange(n_s) ] # timeinversion for SO xoupling
|
|
else:
|
|
time_inv = [ 0 for j in xrange(n_s) ]
|
|
|
|
# Now read matrices:
|
|
mat = []
|
|
for in_s in xrange(n_s):
|
|
|
|
mat.append( [ numpy.zeros([orbits[orb][3], orbits[orb][3]],numpy.complex_) for orb in xrange(n_orbits) ] )
|
|
for orb in range(n_orbits):
|
|
for i in xrange(orbits[orb][3]):
|
|
for j in xrange(orbits[orb][3]):
|
|
mat[in_s][orb][i,j] = R.next() # real part
|
|
for i in xrange(orbits[orb][3]):
|
|
for j in xrange(orbits[orb][3]):
|
|
mat[in_s][orb][i,j] += 1j * R.next() # imaginary part
|
|
|
|
mat_tinv = [numpy.identity(orbits[orb][3],numpy.complex_)
|
|
for orb in range(n_orbits)]
|
|
|
|
if ((SO==0) and (SP==0)):
|
|
# here we need an additional time inversion operation, so read it:
|
|
for orb in range(n_orbits):
|
|
for i in xrange(orbits[orb][3]):
|
|
for j in xrange(orbits[orb][3]):
|
|
mat_tinv[orb][i,j] = R.next() # real part
|
|
for i in xrange(orbits[orb][3]):
|
|
for j in xrange(orbits[orb][3]):
|
|
mat_tinv[orb][i,j] += 1j * R.next() # imaginary part
|
|
|
|
|
|
|
|
except StopIteration : # a more explicit error if the file is corrupted.
|
|
raise "Wien2k_converter : reading file symm_file failed!"
|
|
|
|
R.close()
|
|
# Reading done!
|
|
|
|
# Save it to the HDF:
|
|
ar=HDFArchive(self.hdf_file,'a')
|
|
if not (symm_subgrp in ar): ar.create_group(symm_subgrp)
|
|
things_to_save = ['n_s','n_atoms','perm','orbits','SO','SP','time_inv','mat','mat_tinv']
|
|
for it in things_to_save: ar[symm_subgrp][it] = locals()[it]
|
|
del ar
|