3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 03:33:50 +01:00
dft_tools/triqs/arrays/h5/simple_read_write.cpp
2014-07-16 23:30:05 +02:00

122 lines
5.6 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011-2014 by O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#include "./simple_read_write.hpp"
#include "./../../h5/base.hpp"
using dcomplex = std::complex<double>;
namespace triqs {
namespace arrays {
namespace h5_impl {
// the dataspace corresponding to the array. Contiguous data only...
h5::dataspace data_space_impl(array_stride_info info, bool is_complex) {
hsize_t L[info.R], S[info.R];
for (int u = 0; u < info.R; ++u) {
if (info.strides[u] <= 0) TRIQS_RUNTIME_ERROR << " negative strides not permitted in h5";
S[u] = 1;
L[u] = info.lengths[u];
}
return h5::dataspace_from_LS(info.R, is_complex, L, L, S);
}
/// --------------------------- WRITE ---------------------------------------------
template <typename T> void write_array_impl(h5::group g, std::string const& name, const T* start, array_stride_info info) {
static_assert(!std::is_base_of<std::string, T>::value, " Not implemented"); // 1d is below
bool is_complex = triqs::is_complex<T>::value;
h5::dataset ds = g.create_dataset(name, h5::data_type_file<T>(), data_space_impl(info, is_complex));
auto err =
H5Dwrite(ds, h5::data_type_memory<T>(), data_space_impl(info, is_complex), H5S_ALL, H5P_DEFAULT, h5::get_data_ptr(start));
if (err < 0) TRIQS_RUNTIME_ERROR << "Error writing the scalar dataset " << name << " in the group" << g.name();
// if complex, to be python compatible, we add the __complex__ attribute
if (is_complex) h5::write_string_attribute(ds, "__complex__", "1");
}
template void write_array_impl<int>(h5::group g, std::string const& name, const int* start, array_stride_info info);
template void write_array_impl<long>(h5::group g, std::string const& name, const long* start, array_stride_info info);
template void write_array_impl<double>(h5::group g, std::string const& name, const double* start, array_stride_info info);
template void write_array_impl<dcomplex>(h5::group g, std::string const& name, const dcomplex* start, array_stride_info info);
// overload : special treatment for arrays of strings (one dimension only).
void write_array(h5::group g, std::string const& name, vector_const_view<std::string> V) {
std::vector<std::string> tmp(V.size());
std::copy(begin(V), end(V), begin(tmp));
h5_write(g, name, tmp);
}
void write_array(h5::group g, std::string const& name, array_const_view<std::string, 1> V) {
std::vector<std::string> tmp(first_dim(V));
std::copy(begin(V), end(V), begin(tmp));
h5_write(g, name, tmp);
}
/// --------------------------- READ ---------------------------------------------
std::vector<size_t> get_array_lengths(int R, h5::group g, std::string const& name, bool is_complex) {
h5::dataset ds = g.open_dataset(name);
h5::dataspace d_space = H5Dget_space(ds);
int Rank = R + (is_complex ? 1 : 0);
int rank = H5Sget_simple_extent_ndims(d_space);
if (rank != Rank)
TRIQS_RUNTIME_ERROR << "triqs::array::h5::read. Rank mismatch : the array has rank = " << Rank
<< " while the array stored in the hdf5 file has rank = " << rank;
std::vector<size_t> d2(R);
hsize_t dims_out[rank];
H5Sget_simple_extent_dims(d_space, dims_out, NULL);
for (int u = 0; u < R; ++u) d2[u] = dims_out[u];
return d2;
}
template <typename T> void read_array_impl(h5::group g, std::string const& name, T* start, array_stride_info info) {
static_assert(!std::is_base_of<std::string, T>::value, " Not implemented"); // 1d is below
bool is_complex = triqs::is_complex<T>::value;
h5::dataset ds = g.open_dataset(name);
h5::dataspace d_space = H5Dget_space(ds);
herr_t err =
H5Dread(ds, h5::data_type_memory<T>(), data_space_impl(info, is_complex), d_space, H5P_DEFAULT, h5::get_data_ptr(start));
if (err < 0) TRIQS_RUNTIME_ERROR << "Error reading the scalar dataset " << name << " in the group" << g.name();
}
template void read_array_impl<int>(h5::group g, std::string const& name, int* start, array_stride_info info);
template void read_array_impl<long>(h5::group g, std::string const& name, long* start, array_stride_info info);
template void read_array_impl<double>(h5::group g, std::string const& name, double* start, array_stride_info info);
template void read_array_impl<dcomplex>(h5::group g, std::string const& name, dcomplex* start, array_stride_info info);
void read_array(h5::group g, std::string const& name, arrays::vector<std::string>& V) {
std::vector<std::string> tmp;
h5_read(g, name, tmp);
V.resize(tmp.size());
std::copy(begin(tmp), end(tmp), begin(V));
}
// I cannot use the generic code, just because the resize of the array take a shape, not a size_t as std::vector and vector
void read_array(h5::group f, std::string const& name, arrays::array<std::string, 1>& V) {
arrays::vector<std::string> res;
read_array(f, name, res);
V = res;
}
}
}
}