3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-26 06:14:14 +01:00
dft_tools/triqs/lattice/tight_binding.cpp
Olivier Parcollet 6fa737978e arrays: remove .len (redundant)
.len -> .shape
with same syntax.
Made a few necessary corrections here and there.
2013-08-27 13:43:57 +02:00

223 lines
7.5 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2011 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#include "tight_binding.hpp"
#include <triqs/arrays/algorithms.hpp>
#include <triqs/arrays/linalg/eigenelements.hpp>
#include "grid_generator.hpp"
#include "functors.hpp"
namespace triqs { namespace lattice_tools {
using namespace std;
using namespace tqa;
//------------------------------------------------------
array_view <dcomplex,3> hopping_stack (tight_binding const & TB, array_view<double,2> const & k_stack) {
auto TK = Fourier(TB);
array<dcomplex,3> res(TB.n_bands(), TB.n_bands(), k_stack.shape(1));
for(size_t i = 0; i<k_stack.shape(1); ++i) res(range(), range(), i) = TK(k_stack(range(),i));
return res;
}
//------------------------------------------------------
array_view<double,2> energies_on_bz_path(tight_binding const & TB, K_view_type K1, K_view_type K2, size_t n_pts) {
auto TK = Fourier(TB);
const size_t norb=TB.lattice().n_orbitals();
const size_t ndim=TB.lattice().dim();
array<double,2> eval(norb,n_pts);
K_type dk = (K2 - K1)/double(n_pts), k = K1;
for (size_t i =0; i<n_pts; ++i, k += dk) {
eval(range(),i) = linalg::eigenvalues( TK( k (range(0,ndim))), false);
}
return eval;
}
//------------------------------------------------------
array_view<double,2> energies_on_bz_grid(tight_binding const & TB, size_t n_pts) {
auto TK = Fourier(TB);
const size_t norb=TB.lattice().n_orbitals();
const size_t ndim=TB.lattice().dim();
grid_generator grid(ndim,n_pts);
array<double,2> eval(norb,grid.size());
for (; grid ; ++grid) {
eval(range(),grid.index()) = linalg::eigenvalues( TK( (*grid) (range(0,ndim))), false);
}
return eval;
}
//------------------------------------------------------
std::pair<array<double,1>, array<double,2> > dos(tight_binding const & TB, size_t nkpts, size_t neps) {
// The Fourier transform of TK
// auto TK = Fourier(TB); // C++0x ....
auto TK = Fourier(TB);
// loop on the BZ
const size_t ndim=TB.lattice().dim();
const size_t norb=TB.lattice().n_orbitals();
grid_generator grid(ndim,nkpts);
array<double,1> tempeval(norb);
array<dcomplex,3> evec(norb,norb,grid.size());
array<double,2> eval(norb,grid.size());
if (norb ==1)
for (; grid ; ++grid) {
double ee = real(TK( (*grid) (range(0,ndim)))(0,0));
eval(0,grid.index()) =ee;
evec(0,0,grid.index()) =1;
}
else
for (; grid ; ++grid) {
//cerr<<" index = "<<grid.index()<<endl;
array_view <double,1> eval_sl = eval(range(),grid.index());
array_view <dcomplex,2> evec_sl = evec(range(),range(),grid.index());
std::tie (eval_sl,evec_sl) = linalg::eigenelements( TK( (*grid) (range(0,ndim)))); //, true);
//cerr<< " point "<< *grid << " value "<< eval_sl<< endl; //" "<< (*grid) (range(0,ndim)) << endl;
}
// define the epsilon mesh, etc.
array<double,1> epsilon(neps);
double epsmax = tqa::max_element(eval);
double epsmin = tqa::min_element(eval);
double deps=(epsmax-epsmin)/neps;
//for (size_t i =0; i< neps; ++i) epsilon(i)= epsmin+i/(neps-1.0)*(epsmax-epsmin);
for (size_t i =0; i< neps; ++i) epsilon(i)=epsmin+(i+0.5)*deps;
// bin the eigenvalues according to their energy
// NOTE: a is defined as an integer. it is the index for the DOS.
//REPORT <<"Starting Binning ...."<<endl;
array<double,2> rho (neps,norb);rho()=0;
for(size_t l=0;l<norb;l++){
for (size_t j=0;j<grid.size();j++){
for (size_t k=0;k<norb;k++){
int a=int((eval(k,j)-epsmin)/deps);
if(a==int(neps)) a=a-1;
rho(a,l) += real(conj(evec(l,k,j))*evec(l,k,j));
//dos(a) += real(conj(evec(l,k,j))*evec(l,k,j));
}
}
}
//rho = rho / double(grid.size()*deps);
rho /= grid.size()*deps;
return std::make_pair( epsilon, rho);
}
//----------------------------------------------------------------------------------
std::pair<array<double,1>, array<double,1> > dos_patch(tight_binding const & TB, const array<double,2> & triangles, size_t neps, size_t ndiv) {
// WARNING: This version only works for a single band Hamiltonian in 2 dimensions!!!!
// triangles is an array of points defining the triangles of the patch
// neps in the number of bins in energy
// ndiv in the number of divisions used to divide the triangles
//const size_t ndim=TB.lattice().dim();
//const size_t norb=TB.lattice().n_orbitals();
int ntri = triangles.shape(0)/3;
array<double,1> dos(neps);
// Check consistency
const size_t ndim=TB.lattice().dim();
//const size_t norb=TB.lattice().n_orbitals();
if (ndim !=2) TRIQS_RUNTIME_ERROR<<"dos_patch : dimension 2 only !";
if (triangles.shape(1) != ndim) TRIQS_RUNTIME_ERROR<<"dos_patch : the second dimension of the 'triangle' array in not "<<ndim;
// Every triangle has ndiv*ndiv k points
size_t nk = ntri*ndiv*ndiv;
size_t k_index = 0;
double epsmax=-100000,epsmin=100000;
array<dcomplex,2> thop(1,1);
array<double,1> energ(nk), weight(nk);
// a, b, c are the corners of the triangle
// g the center of gravity taken from a
array<double,1> a(ndim), b(ndim), c(ndim), g(ndim), rv(ndim);
int pt = 0;
double s, t;
// The Fourier transform of TK
auto TK = Fourier(TB);
// loop over the triangles
for (int tri = 0; tri < ntri; tri++) {
a = triangles(pt,range());
pt++;
b = triangles(pt,range());
pt++;
c = triangles(pt,range());
pt++;
g = ((a+b+c)/3.0-a)/double(ndiv);
// the area around a k point might be different from one triangle to the other
// so I use it to weight the sum in the dos
double area = abs(0.5*((b(0)-a(0))*(c(1)-a(1))-(b(1)-a(1))*(c(0)-a(0)))/(ndiv*ndiv));
for (size_t i = 0; i<ndiv; i++) {
s = i/double(ndiv);
for (size_t j = 0; j<ndiv-i; j++) {
t = j/double(ndiv);
for (size_t k = 0; k<2; k++) {
rv = a+s*(b-a)+t*(c-a)+(k+1.0)*g;
if(k==0 || j < ndiv-i-1) {
energ(k_index) = real(TK(rv)(0,0));
//compute(rv);
//energ(k_index) = real(tk_for_eval(1,1)); //tk_for_eval is Fortran array
weight(k_index) = area;
if (energ(k_index)>epsmax) epsmax=energ(k_index);
if (energ(k_index)<epsmin) epsmin=energ(k_index);
k_index++;
}
}
}
}
}
// check consistency
assert(k_index == nk);
// define the epsilon mesh, etc.
array<double,1> epsilon(neps);
double deps=(epsmax-epsmin)/neps;
for (size_t i =0; i< neps; ++i) epsilon(i)= epsmin+i/(neps-1.0)*(epsmax-epsmin);
// bin the eigenvalues according to their energy
int ind;
double totalweight(0.0);
dos() = 0.0;
for (size_t j = 0; j < nk; j++) {
ind=int((energ(j)-epsmin)/deps);
if (ind == int(neps)) ind--;
dos(ind) += weight(j);
totalweight += weight(j);
}
dos /= deps;// Normalize the DOS
return std::make_pair(epsilon, dos);
}
}}