mirror of
https://github.com/triqs/dft_tools
synced 2025-01-13 14:29:01 +01:00
e0f58aeb62
- reinterpret array is much simple. clean old code after check on various compilers
202 lines
9.8 KiB
C++
202 lines
9.8 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#ifndef TRIQS_GF_MESH_PRODUCT_H
|
|
#define TRIQS_GF_MESH_PRODUCT_H
|
|
#include "./mesh_tools.hpp"
|
|
#include "../domains/product.hpp"
|
|
#include <triqs/utility/tuple_tools.hpp>
|
|
#include <triqs/utility/mini_vector.hpp>
|
|
namespace triqs { namespace gfs {
|
|
|
|
template<typename... Meshes> struct mesh_product : tag::composite {
|
|
typedef domain_product<typename Meshes::domain_t ... > domain_t;
|
|
typedef std::tuple<typename Meshes::index_t ... > index_t;
|
|
typedef std::tuple<Meshes...> m_tuple_t;
|
|
typedef std::tuple<typename Meshes::mesh_point_t ...> m_pt_tuple_t;
|
|
typedef typename domain_t::point_t domain_pt_t;
|
|
|
|
static constexpr int dim = sizeof...(Meshes);
|
|
|
|
mesh_product () {}
|
|
mesh_product (Meshes const & ... meshes) : m_tuple(meshes...), _dom(meshes.domain()...) {}
|
|
|
|
domain_t const & domain() const { return _dom;}
|
|
m_tuple_t const & components() const { return m_tuple;}
|
|
m_tuple_t & components() { return m_tuple;}
|
|
|
|
/// size of the mesh is the product of size
|
|
struct _aux0 { template<typename M> size_t operator()(M const & m, size_t R) { return R*m.size();}};
|
|
size_t size() const { return triqs::tuple::fold(_aux0(), m_tuple, 1);}
|
|
|
|
/// Conversions point <-> index <-> linear_index
|
|
struct _aux1 { template<typename P, typename M, typename I> void operator()(P & p, M const & m, I const& i) {p = m.index_to_point(i);}};
|
|
typename domain_t::point_t index_to_point(index_t const & ind) const { domain_pt_t res; triqs::tuple::apply_on_zip(_aux1(), res,m_tuple,ind); return res;}
|
|
|
|
// index[0] + component[0].size * (index[1] + component[1].size* (index[2] + ....))
|
|
struct _aux2 { template<typename I, typename M> size_t operator()(M const & m, I const & i,size_t R) {return m.index_to_linear(i) + R * m.size();}};
|
|
size_t index_to_linear(index_t const & ii) const { return triqs::tuple::fold_on_zip(_aux2(), m_tuple, ii, size_t(0)); }
|
|
|
|
// Same but a tuple of mesh_point_t
|
|
struct _aux3 { template<typename P, typename M> size_t operator()(M const & m, P const & p,size_t R) {return p.linear_index() + R * m.size();}};
|
|
size_t mp_to_linear(m_pt_tuple_t const & mp) const { return triqs::tuple::fold_on_zip(_aux3(), m_tuple, mp, size_t(0)); }
|
|
|
|
//
|
|
struct _aux4 { template< typename M, typename V> V * operator()(M const & m, V * v) {*v = m.size(); return ++v;}};
|
|
utility::mini_vector<size_t,dim> all_size_as_mini_vector () const {
|
|
utility::mini_vector<size_t,dim> res;
|
|
triqs::tuple::fold(_aux4(), m_tuple, &res[0] );
|
|
return res;
|
|
}
|
|
|
|
// Same but a variadic list of mesh_point_t
|
|
template<typename ... MP> size_t mesh_pt_components_to_linear(MP const & ... mp) const {
|
|
static_assert(std::is_same< std::tuple<MP...>, m_pt_tuple_t>::value, "Call incorrect ");
|
|
//static_assert(std::is_same< std::tuple<typename std::remove_cv<typename std::remove_reference<MP>::type>::type...>, m_pt_tuple_t>::value, "Call incorrect ");
|
|
return mp_to_linear(std::forward_as_tuple(mp...));
|
|
} // speed test ? or make a variadic fold...
|
|
|
|
/// The wrapper for the mesh point
|
|
class mesh_point_t : tag::mesh_point{
|
|
const mesh_product * m;
|
|
m_pt_tuple_t _c; bool _atend;
|
|
struct F2 { template<typename M> typename M::mesh_point_t operator()(M const & m, typename M::index_t const & i) const { return m[i];}};
|
|
struct F1 { template<typename M> typename M::mesh_point_t operator()(M const & m) const { return m[typename M::index_t()];}};
|
|
public :
|
|
mesh_point_t(mesh_product const & m_, index_t index_ ) : m(&m_), _c (triqs::tuple::apply_on_zip(F2(), m_.m_tuple, index_)), _atend(false) {}
|
|
mesh_point_t(mesh_product const & m_) : m(&m_), _c (triqs::tuple::apply(F1(), m_.m_tuple)), _atend(false) {}
|
|
m_pt_tuple_t const & components_tuple() const { return _c;}
|
|
size_t linear_index() const { return m->mp_to_linear(_c);}
|
|
const mesh_product * mesh() const { return m;}
|
|
|
|
typedef domain_pt_t cast_t;
|
|
operator cast_t() const { return m->index_to_point(index);}
|
|
|
|
// index[0] +=1; if index[0]==m.component[0].size() { index[0]=0; index[1] +=1; if ....} and so on until dim
|
|
struct _aux1 { template<typename P> bool operator()(P & p, bool done)
|
|
{if (done) return true; p.advance(); if (p.at_end()) {p.reset(); return false;} return true;}
|
|
};
|
|
void advance() { triqs::tuple::fold(_aux1(), _c, false);}
|
|
|
|
//index_t index() const { return _index;} // not implemented yet
|
|
bool at_end() const { return _atend;}
|
|
|
|
struct _aux{ template<typename M> size_t operator()(M & m,size_t ) { m.reset(); return 0;}};
|
|
void reset() { _atend = false; triqs::tuple::fold(_aux(), _c,0);}
|
|
};// end mesh_point_t
|
|
|
|
/// Accessing a point of the mesh
|
|
mesh_point_t operator[](index_t i) const { return mesh_point_t(*this, i);}
|
|
mesh_point_t operator()(typename Meshes::index_t ... i) const { return (*this)[std::make_tuple(i...)];}
|
|
|
|
/// Iterating on all the points...
|
|
typedef mesh_pt_generator<mesh_product> const_iterator;
|
|
const_iterator begin() const { return const_iterator (this);}
|
|
const_iterator end() const { return const_iterator (this, true);}
|
|
const_iterator cbegin() const { return const_iterator (this);}
|
|
const_iterator cend() const { return const_iterator (this, true);}
|
|
|
|
/// Mesh comparison
|
|
friend bool operator == (mesh_product const & M1, mesh_product const & M2) { return M1.m_tuple==M2.m_tuple; }
|
|
|
|
/// Write into HDF5
|
|
struct _auxh5w {
|
|
h5::group gr; _auxh5w( h5::group gr_) : gr(gr_) {} //icc has yet another bug on new initialization form with {}...
|
|
template<typename M> size_t operator()(M const & m, size_t N) { std::stringstream fs;fs <<"MeshComponent"<< N; h5_write(gr,fs.str(), m); return N+1; }
|
|
};
|
|
friend void h5_write (h5::group fg, std::string subgroup_name, mesh_product const & m) {
|
|
h5::group gr = fg.create_group(subgroup_name);
|
|
//h5_write(gr,"domain",m.domain());
|
|
triqs::tuple::fold(_auxh5w(gr), m.components(), size_t(0));
|
|
}
|
|
|
|
/// Read from HDF5
|
|
struct _auxh5r {
|
|
h5::group gr;_auxh5r( h5::group gr_) : gr(gr_) {}
|
|
template<typename M> size_t operator()(M & m, size_t N) { std::stringstream fs;fs <<"MeshComponent"<< N; h5_read(gr,fs.str(), m); return N+1; }
|
|
};
|
|
friend void h5_read (h5::group fg, std::string subgroup_name, mesh_product & m){
|
|
h5::group gr = fg.open_group(subgroup_name);
|
|
//h5_read(gr,"domain",m._dom);
|
|
triqs::tuple::fold(_auxh5r(gr), m.components(), size_t(0));
|
|
}
|
|
|
|
// BOOST Serialization
|
|
friend class boost::serialization::access;
|
|
template<typename Archive> struct _aux_ser {
|
|
Archive & ar;_aux_ser( Archive & ar_) : ar(ar_) {}
|
|
template<typename M> size_t operator()(M & m, size_t N) {
|
|
std::stringstream fs;fs <<"MeshComponent"<< N;
|
|
ar & boost::serialization::make_nvp(fs.str().c_str(),m);
|
|
return N+1;
|
|
}
|
|
};
|
|
template<class Archive>
|
|
void serialize(Archive & ar, const unsigned int version) {
|
|
triqs::tuple::fold(_aux_ser<Archive>(ar), m_tuple, size_t(0));
|
|
}
|
|
|
|
private:
|
|
m_tuple_t m_tuple;
|
|
domain_t _dom;
|
|
};
|
|
|
|
//template<int pos, typename ... M>
|
|
//typename std::tuple_element<pos,typename mesh_product<M...>::index_t>::type get_index1(typename mesh_product<M...>::mesh_point_t const & p) { return std::get<pos>(p.components_tuple());}
|
|
|
|
template<int pos, typename P>
|
|
auto get_index(P const & p) DECL_AND_RETURN( std::get<pos>(p.components_tuple()).index());
|
|
|
|
template<int pos, typename P>
|
|
auto get_point(P const & p) DECL_AND_RETURN( std::get<pos>( p.mesh()->components() ).index_to_point( std::get<pos>(p.components_tuple()).index() ) );
|
|
|
|
template<int pos, typename P>
|
|
auto get_component(P const & p) DECL_AND_RETURN( std::get<pos>(p.components_tuple()));
|
|
|
|
// C++14
|
|
//auto get_point(P const & p) { return std::get<pos> (p.mesh()->components()).index_to_point( std::get<pos>(p.components_tuple()));}
|
|
|
|
// Given a composite mesh m , and a linear array of storage A
|
|
// reinterpret_linear_array(m,A) returns a d-dimensionnal view of the array
|
|
// with indices egal to the indices of the components of the mesh.
|
|
// Very useful for slicing, currying functions.
|
|
template<typename ... Meshes, typename T, ull_t OptionsFlags >
|
|
arrays::array_view<T, sizeof...(Meshes),OptionsFlags, arrays::indexmaps::mem_layout::fortran_order(sizeof...(Meshes)) >
|
|
reinterpret_linear_array(mesh_product<Meshes...> const & m, arrays::array_view<T,1,OptionsFlags> const & A) {
|
|
return { {m.all_size_as_mini_vector()}, A.storage()};
|
|
}
|
|
/* static int constexpr rank = sizeof...(Meshes);
|
|
typedef arrays::array_view<T, sizeof...(Meshes),OptionsFlags, arrays::indexmaps::mem_layout::fortran_order(rank)> return_t;
|
|
typedef typename return_t::indexmap_type im_t;
|
|
auto l = m.all_size_as_mini_vector();
|
|
typename im_t::strides_type sv;
|
|
std::ptrdiff_t s= 1;
|
|
for (int u=0; u<rank; ++u) { sv[u] = s; s *= l[u];} // fortran type folding
|
|
return return_t (im_t (l,sv,0) , A.storage());
|
|
|
|
// why fortran ??
|
|
// why compute the stride ?? just use return { {l}, A.storage()} ;
|
|
*/
|
|
|
|
|
|
|
|
}}
|
|
#endif
|