mirror of
https://github.com/triqs/dft_tools
synced 2024-10-31 19:23:45 +01:00
7898bd8d88
simplify : mesh was a impl trait, make it the class itself. corrected the gf, tests and the cython.
108 lines
4.4 KiB
C++
108 lines
4.4 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#ifndef TRIQS_GF_IMTIME_REFREQ_TIMES_H
|
|
#define TRIQS_GF_IMTIME_REFREQ_TIMES_H
|
|
#include "./tools.hpp"
|
|
#include "./gf.hpp"
|
|
#include "./imtime.hpp"
|
|
#include "./refreq.hpp"
|
|
#include "./meshes/product.hpp"
|
|
|
|
namespace triqs { namespace gfs {
|
|
|
|
struct refreq_imtime {};
|
|
|
|
// the mesh
|
|
template<typename Opt> struct mesh<refreq_imtime,Opt> :mesh_product<mesh<refreq,Opt>,mesh<imtime,Opt>> {
|
|
typedef mesh<refreq,Opt> m1_t;
|
|
typedef mesh<imtime,Opt> m2_t;
|
|
typedef mesh_product<m1_t,m2_t> B;
|
|
mesh (double wmin, double wmax, size_t n_freq, double beta, statistic_enum S, size_t nt, mesh_kind mk=full_bins ) :
|
|
B {mesh<refreq,Opt>(wmin,wmax,n_freq), mesh<imtime,Opt>(beta,S,nt,mk)} {}
|
|
};
|
|
|
|
namespace gfs_implementation {
|
|
// singularity
|
|
//template<typename Opt> struct singularity<refreq_imtime,scalar_valued,Opt> { typedef gf<retime,scalar_valued> type;};
|
|
|
|
// h5 name
|
|
template<typename Opt> struct h5_name<refreq_imtime,scalar_valued,Opt> { static std::string invoke(){ return "GfReFreqImTime";}};
|
|
|
|
/// --------------------------- data access ---------------------------------
|
|
|
|
template<typename Opt> struct data_proxy<refreq_imtime,scalar_valued,Opt> : data_proxy_array<std::complex<double>,1> {};
|
|
|
|
/// --------------------------- evaluator ---------------------------------
|
|
|
|
template<typename Opt>
|
|
struct evaluator<refreq_imtime,scalar_valued,Opt> {
|
|
static constexpr int arity = 2;
|
|
template<typename G>
|
|
std::complex<double> operator() (G const * g, double omega, double tau) const {
|
|
double beta = std::get<1>(g->mesh().components()).domain().beta;
|
|
int p = std::floor(tau/beta);
|
|
tau -= p*beta;
|
|
size_t n1,n2; double w1,w2; bool in;
|
|
std::tie(in, n1, w1) = windowing( std::get<0>(g->mesh().components()),omega);
|
|
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
|
|
std::tie(in, n2, w2) = windowing( std::get<1>(g->mesh().components()),tau);
|
|
if (!in) TRIQS_RUNTIME_ERROR <<" Evaluation out of bounds";
|
|
auto gg = on_mesh(*g); //[g]( size_t n1, size_t n2) {return g->on_mesh(n1,n2);};
|
|
auto res = w1 *( w2*gg(n1,n2) + (1-w2)*gg(n1,n2+1)) + (1-w1) * ( w2*gg(n1+1,n2) + (1-w2)*gg(n1+1,n2+1));
|
|
|
|
//std::cout << "eval reref imtim"<< n1 << " "<< n2 << " "<< w1 << " " << w2 << " "<< omega << " "<< tau<< std::endl;
|
|
|
|
return ((std::get<1>(g->mesh().components()).domain().statistic == Fermion) && (p%2==1) ? -res : res);
|
|
}
|
|
};
|
|
|
|
// ------------------------------- Factories --------------------------------------------------
|
|
|
|
template<typename Opt> struct factories<refreq_imtime, scalar_valued,Opt> {
|
|
typedef gf<refreq_imtime, scalar_valued,Opt> gf_t;
|
|
|
|
template<typename MeshType>
|
|
static gf_t make_gf(MeshType && m) {
|
|
typename gf_t::data_regular_t A(m.size());
|
|
A() =0;
|
|
return gf_t (m, std::move(A), nothing(), nothing() ) ;
|
|
}
|
|
|
|
static gf_t make_gf(double wmin, double wmax, size_t n_freq, double beta, statistic_enum S, size_t nt, mesh_kind mk=full_bins) {
|
|
auto m = mesh<refreq_imtime,Opt>(wmin, wmax, n_freq, beta,S, nt, mk);
|
|
typename gf_t::data_regular_t A(m.size());
|
|
A() =0;
|
|
return gf_t (m, std::move(A), nothing(), nothing() ) ;
|
|
}
|
|
};
|
|
|
|
} // gfs_implementation
|
|
|
|
//slices
|
|
inline gf_view<refreq,scalar_valued> slice_mesh_imtime (gf_view<refreq_imtime,scalar_valued> g, size_t index) {
|
|
auto arr = reinterpret_linear_array(g.mesh(),g.data()); // view it as a 2d array
|
|
return { std::get<0>(g.mesh().components()), arr(arrays::range(),index), local::tail(1,1), nothing() };
|
|
}
|
|
|
|
}}
|
|
#endif
|
|
|