mirror of
https://github.com/triqs/dft_tools
synced 2024-11-01 19:53:45 +01:00
0a1285405c
- Add Fourier for lattice. - Add regular_bz_mesh, cyclic_lattice, and their FFT. - rm freq_infty. - The gf can now be evaluated on a tail_view, which result in composing the tail. - Fix the following issue : g(om_) << g(om_ +1) will recompose the tail correctly. - TODO : TEST THIS NEW FEATURE IN DETAIL. - Work on singularity for G(x, omega) - Separate the factory for singularity from the data factory in gf. - overload assign_from_functoin (renamed). - Fix singularity_t and co in the gf (const issue). - Clean tail, add tail_const_view - add m_tail for x -> tail on any mesh - test curry + fourier works on k
144 lines
5.4 KiB
C++
144 lines
5.4 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2011-2014 by O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#include "./vector.hpp"
|
|
#include "./base.hpp"
|
|
|
|
namespace triqs {
|
|
namespace h5 {
|
|
|
|
void h5_write(group g, std::string const &name, std::vector<std::string> const &V) {
|
|
size_t s = 0;
|
|
for (auto &x : V) s = std::max(s, x.size());
|
|
|
|
datatype strdatatype = H5Tcopy (H5T_C_S1);
|
|
auto status = H5Tset_size (strdatatype, s);
|
|
//auto status = H5Tset_size (strdatatype, H5T_VARIABLE);
|
|
|
|
const size_t n = V.size();
|
|
std::vector<char> buf(n * (s + 1), 0x00);
|
|
size_t i = 0;
|
|
for (auto &x : V) {
|
|
strcpy(&buf[i * s], x.c_str());
|
|
++i;
|
|
}
|
|
|
|
hsize_t L[1], S[1];
|
|
L[0] = V.size();
|
|
S[0] = 1;
|
|
auto d_space = dataspace_from_LS(1, false, L, L, S);
|
|
|
|
h5::dataset ds = g.create_dataset(name, strdatatype, d_space);
|
|
auto err = H5Dwrite(ds, strdatatype, d_space, H5S_ALL, H5P_DEFAULT, &buf[0]);
|
|
if (err < 0) TRIQS_RUNTIME_ERROR << "Error writing the vector<string> " << name << " in the group" << g.name();
|
|
}
|
|
|
|
// ----- read -----
|
|
void h5_read(group g, std::string const &name, std::vector<std::string> &V) {
|
|
dataset ds = g.open_dataset(name);
|
|
h5::dataspace d_space = H5Dget_space(ds);
|
|
|
|
mini_vector<hsize_t, 1> dims_out;
|
|
int ndims = H5Sget_simple_extent_dims(d_space, dims_out.ptr(), NULL);
|
|
if (ndims != 1) TRIQS_RUNTIME_ERROR
|
|
<< "triqs::h5 : Trying to read 1d array/vector . Rank mismatch : the array stored in the hdf5 file has rank = " << ndims;
|
|
|
|
size_t Len = dims_out[0];
|
|
V.resize(Len);
|
|
size_t size = H5Dget_storage_size(ds);
|
|
|
|
datatype strdatatype = H5Tcopy (H5T_C_S1);
|
|
auto status = H5Tset_size (strdatatype, size);
|
|
//auto status = H5Tset_size (strdatatype, H5T_VARIABLE);
|
|
|
|
std::vector<char> buf(Len * (size + 1), 0x00);
|
|
|
|
hsize_t L[1], S[1];
|
|
L[0] = V.size();
|
|
S[0] = 1;
|
|
auto d_space2 = dataspace_from_LS(1, false, L, L, S);
|
|
|
|
auto err = H5Dread(ds, strdatatype, d_space2, H5S_ALL, H5P_DEFAULT, &buf[0]);
|
|
if (err < 0) TRIQS_RUNTIME_ERROR << "Error reading the vector<string> " << name << " in the group" << g.name();
|
|
|
|
size_t i = 0;
|
|
for (auto &x : V) {
|
|
x = "";
|
|
x.append(&buf[i * (size)]);
|
|
++i;
|
|
}
|
|
}
|
|
|
|
// implementation for vector of double and complex
|
|
namespace {
|
|
|
|
// the dataspace corresponding to the array. Contiguous data only...
|
|
template <typename T> dataspace data_space_for_vector(std::vector<T> const &V) {
|
|
hsize_t L[1], S[1];
|
|
S[0] = 1;
|
|
L[0] = V.size();
|
|
return h5::dataspace_from_LS(1, triqs::is_complex<T>::value, L, L, S);
|
|
}
|
|
|
|
//------------------------------------
|
|
|
|
template <typename T> inline void h5_write_vector_impl(group g, std::string const &name, std::vector<T> const &V) {
|
|
|
|
dataset ds = g.create_dataset(name, h5::data_type_file<T>(), data_space_for_vector(V));
|
|
|
|
auto err = H5Dwrite(ds, h5::data_type_memory<T>(), data_space_for_vector(V), H5S_ALL, H5P_DEFAULT, &V[0]);
|
|
if (err < 0) TRIQS_RUNTIME_ERROR << "Error writing the vector<....> " << name << " in the group" << g.name();
|
|
|
|
// if complex, to be python compatible, we add the __complex__ attribute
|
|
if (triqs::is_complex<T>::value) h5::write_string_attribute(ds, "__complex__", "1");
|
|
}
|
|
|
|
//------------------------------------
|
|
|
|
template <typename T> inline void h5_read_impl(group g, std::string const &name, std::vector<T> &V) {
|
|
|
|
dataset ds = g.open_dataset(name);
|
|
h5::dataspace d_space = H5Dget_space(ds);
|
|
|
|
static const unsigned int Rank = 1 + (triqs::is_complex<T>::value ? 1 : 0);
|
|
int rank = H5Sget_simple_extent_ndims(d_space);
|
|
if (rank != Rank)
|
|
TRIQS_RUNTIME_ERROR << "triqs : h5 : read vector. Rank mismatch : the array stored in the hdf5 file has rank = " << rank;
|
|
hsize_t dims_out[Rank];
|
|
H5Sget_simple_extent_dims(d_space, dims_out, NULL);
|
|
V.resize(dims_out[0]);
|
|
|
|
auto err = H5Dread(ds, h5::data_type_memory<T>(), data_space_for_vector(V), d_space, H5P_DEFAULT, &V[0]);
|
|
if (err < 0) TRIQS_RUNTIME_ERROR << "Error reading the vector<...> " << name << " in the group" << g.name();
|
|
}
|
|
} // impl namespace
|
|
|
|
|
|
void h5_write(group f, std::string const &name, std::vector<int> const &V) { h5_write_vector_impl(f, name, V); }
|
|
void h5_write(group f, std::string const &name, std::vector<double> const &V) { h5_write_vector_impl(f, name, V); }
|
|
void h5_write(group f, std::string const &name, std::vector<std::complex<double>> const &V) { h5_write_vector_impl(f, name, V); }
|
|
|
|
void h5_read(group f, std::string const &name, std::vector<int> &V) { h5_read_impl(f, name, V); }
|
|
void h5_read(group f, std::string const &name, std::vector<double> &V) { h5_read_impl(f, name, V); }
|
|
void h5_read(group f, std::string const &name, std::vector<std::complex<double>> &V) { h5_read_impl(f, name, V); }
|
|
}
|
|
}
|
|
|