3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 19:53:45 +01:00
dft_tools/triqs/gfs/gf_expr.hpp
Olivier Parcollet fa07abbea9 [gfs] Singularity as an explicit template parameter
- change the underlying data : do not flatten the linear indices of the
  mesh into a single index, keep a higher dim array.
- easier for various places, and necessary for g(nu,nu').
- work on several 2 part. containers.
- add default target (may not be always matrix_valued)
2014-10-18 21:20:16 +02:00

181 lines
9.0 KiB
C++

/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by M. Ferrero, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_GF_EXPR_H
#define TRIQS_GF_EXPR_H
#include <triqs/utility/expression_template_tools.hpp>
namespace triqs { namespace gfs {
using utility::is_in_ZRC;
using utility::remove_rvalue_ref;
namespace gfs_expr_tools {
// a wrapper for scalars
template <typename S> struct scalar_wrap {
using variable_t = void;
using target_t = void;
using option_t = void;
S s;
template <typename T> scalar_wrap(T &&x) : s(std::forward<T>(x)) {}
S singularity() const { return s; }
template <typename KeyType> S operator[](KeyType &&key) const { return s; }
template <typename... Args> inline S operator()(Args &&... args) const { return s; }
friend std::ostream &operator<<(std::ostream &sout, scalar_wrap const &expr) { return sout << expr.s; }
};
// Combine the two meshes of LHS and RHS : need to specialize where there is a scalar
struct combine_mesh {
template <typename L, typename R> auto operator()(L &&l, R &&r) const -> decltype(std::forward<L>(l).mesh()) {
if (!(l.mesh() == r.mesh()))
TRIQS_RUNTIME_ERROR << "Mesh mismatch : in Green Function Expression " << l.mesh() << " vs" << r.mesh();
return std::forward<L>(l).mesh();
}
template <typename S, typename R>
auto operator()(scalar_wrap<S> const &, R &&r) const DECL_AND_RETURN(std::forward<R>(r).mesh());
template <typename S, typename L>
auto operator()(L &&l, scalar_wrap<S> const &) const DECL_AND_RETURN(std::forward<L>(l).mesh());
};
// Same thing to get the data shape
// NB : could be unified to one combine<F>, where F is a functor, but an easy usage requires polymorphic lambda ...
struct combine_shape {
template <typename L, typename R> auto operator()(L &&l, R &&r) const -> decltype(get_gf_data_shape(std::forward<L>(l))) {
if (!(get_gf_data_shape(l) == get_gf_data_shape(r)))
TRIQS_RUNTIME_ERROR << "Shape mismatch in Green Function Expression: " << get_gf_data_shape(l) << " vs "
<< get_gf_data_shape(r);
return get_gf_data_shape(std::forward<L>(l));
}
template <typename S, typename R>
auto operator()(scalar_wrap<S> const &, R &&r) const DECL_AND_RETURN(get_gf_data_shape(std::forward<R>(r)));
template <typename S, typename L>
auto operator()(L &&l, scalar_wrap<S> const &) const DECL_AND_RETURN(get_gf_data_shape(std::forward<L>(l)));
};
template <typename T> using node_t = std14::conditional_t<utility::is_in_ZRC<T>::value, scalar_wrap<T>, typename remove_rvalue_ref<T>::type>;
template <typename A, typename B> struct _or_ {using type=void ;};
template <typename A> struct _or_<A,A> {using type=A ;};
template <typename A> struct _or_<void,A> {using type=A ;};
template <typename A> struct _or_<A,void> {using type=A ;};
template <> struct _or_<void,void> {using type=void ;};
}// gfs_expr_tools
template <typename Tag, typename L, typename R> struct gf_expr : TRIQS_CONCEPT_TAG_NAME(ImmutableGreenFunction) {
using L_t = typename std::remove_reference<L>::type;
using R_t = typename std::remove_reference<R>::type;
using variable_t = typename gfs_expr_tools::_or_<typename L_t::variable_t, typename R_t::variable_t>::type;
using target_t = typename gfs_expr_tools::_or_<typename L_t::target_t, typename R_t::target_t>::type;
using option_t = typename gfs_expr_tools::_or_<typename L_t::option_t, typename R_t::option_t>::type;
static_assert(!std::is_same<variable_t, void>::value, "Cannot combine two gf expressions with different variables");
static_assert(!std::is_same<target_t, void>::value, "Cannot combine two gf expressions with different target");
L l;
R r;
template <typename LL, typename RR> gf_expr(LL &&l_, RR &&r_) : l(std::forward<LL>(l_)), r(std::forward<RR>(r_)) {}
auto mesh() const DECL_AND_RETURN(gfs_expr_tools::combine_mesh()(l, r));
auto singularity() const DECL_AND_RETURN(utility::operation<Tag>()(l.singularity(), r.singularity()));
template <typename KeyType>
auto operator[](KeyType &&key) const
DECL_AND_RETURN(utility::operation<Tag>()(l[std::forward<KeyType>(key)], r[std::forward<KeyType>(key)]));
template <typename... Args>
auto operator()(Args &&... args) const
DECL_AND_RETURN(utility::operation<Tag>()(l(std::forward<Args>(args)...), r(std::forward<Args>(args)...)));
friend std::ostream &operator<<(std::ostream &sout, gf_expr const &expr) {
return sout << "(" << expr.l << " " << utility::operation<Tag>::name << " " << expr.r << ")";
}
};
template <typename Tag, typename L, typename R>
auto get_gf_data_shape(gf_expr<Tag, L, R> const &g) RETURN(gfs_expr_tools::combine_shape()(g.l, g.r));
// -------------------------------------------------------------------
// a special case : the unary operator !
template <typename L> struct gf_unary_m_expr : TRIQS_CONCEPT_TAG_NAME(ImmutableGreenFunction) {
using L_t = typename std::remove_reference<L>::type;
using variable_t = typename L_t::variable_t;
using target_t = typename L_t::target_t;
using option_t = typename L_t::option_t;
L l;
template<typename LL> gf_unary_m_expr(LL && l_) : l(std::forward<LL>(l_)) {}
auto mesh() const DECL_AND_RETURN(l.mesh());
auto singularity() const DECL_AND_RETURN(l.singularity());
template<typename KeyType> auto operator[](KeyType&& key) const DECL_AND_RETURN( -l[key]);
template<typename ... Args> auto operator()(Args && ... args) const DECL_AND_RETURN( -l(std::forward<Args>(args)...));
friend std::ostream &operator <<(std::ostream &sout, gf_unary_m_expr const &expr){return sout << '-'<<expr.l; }
};
template <typename L> AUTO_DECL get_gf_data_shape(gf_unary_m_expr<L> const &g) RETURN(get_gf_data_shape(g.l));
// -------------------------------------------------------------------
// Now we can define all the C++ operators ...
#define DEFINE_OPERATOR(TAG, OP, TRAIT1, TRAIT2) \
template<typename A1, typename A2>\
std14::enable_if_t<TRAIT1<A1>::value && TRAIT2 <A2>::value, \
gf_expr<utility::tags::TAG, gfs_expr_tools::node_t<A1>, gfs_expr_tools::node_t<A2>>>\
operator OP (A1 && a1, A2 && a2) { return {std::forward<A1>(a1),std::forward<A2>(a2)};}
DEFINE_OPERATOR(plus, +, ImmutableGreenFunction,ImmutableGreenFunction);
DEFINE_OPERATOR(minus, -, ImmutableGreenFunction,ImmutableGreenFunction);
DEFINE_OPERATOR(multiplies, *, ImmutableGreenFunction,ImmutableGreenFunction);
DEFINE_OPERATOR(multiplies, *, is_in_ZRC,ImmutableGreenFunction);
DEFINE_OPERATOR(multiplies, *, ImmutableGreenFunction,is_in_ZRC);
DEFINE_OPERATOR(divides, /, ImmutableGreenFunction,ImmutableGreenFunction);
DEFINE_OPERATOR(divides, /, is_in_ZRC,ImmutableGreenFunction);
DEFINE_OPERATOR(divides, /, ImmutableGreenFunction,is_in_ZRC);
#undef DEFINE_OPERATOR
// the unary is special
template <typename A1>
std14::enable_if_t<ImmutableGreenFunction<A1>::value, gf_unary_m_expr<gfs_expr_tools::node_t<A1>>> operator-(A1 &&a1) {
return {std::forward<A1>(a1)};
}
// Now the inplace operator. Because of expression template, there are useless for speed
// we implement them trivially.
#define DEFINE_OPERATOR(OP1, OP2) \
template <typename Variable, typename Target, typename Opt, typename T> \
void operator OP1(gf_view<Variable, Target, Opt> g, T const &x) { \
g = g OP2 x; \
} \
template <typename Variable, typename Target, typename Opt, typename T> \
void operator OP1(gf<Variable, Target, Opt> &g, T const &x) { \
g = g OP2 x; \
}
DEFINE_OPERATOR(+=, +);
DEFINE_OPERATOR(-=, -);
DEFINE_OPERATOR(*=, *);
DEFINE_OPERATOR(/=, / );
#undef DEFINE_OPERATOR
}}//namespace triqs::gf
#endif