3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-01 11:43:47 +01:00
dft_tools/test/triqs/gfs/gfv2.output
Olivier Parcollet 0a1285405c [gfs] Lattice fourier, multivar G, curry, tail
- Add Fourier for lattice.
  - Add regular_bz_mesh, cyclic_lattice, and their FFT.

- rm freq_infty.
- The gf can now be evaluated on a tail_view, which result in composing the tail.
- Fix the following issue :
  g(om_) << g(om_ +1)
  will recompose the tail correctly.
- TODO : TEST THIS NEW FEATURE IN DETAIL.

- Work on singularity for G(x, omega)

 - Separate the factory for singularity from the data factory in gf.
 - overload assign_from_functoin (renamed).
 - Fix singularity_t and co in the gf (const issue).

- Clean tail, add tail_const_view
 - add m_tail for x -> tail on any mesh
 - test curry + fourier works on k
2014-10-18 21:20:35 +02:00

184 lines
3.1 KiB
Plaintext

(G( 0)) --->
[[(0,0),(0,0)]
[(0,0),(0,0)]]
(Gv( 0)) --->
[[(20,0),(0,0)]
[(0,0),(20,0)]]
(G( 0)) --->
[[(20,0),(0,0)]
[(0,0),(20,0)]]
(Gv2( 0)) --->
[[(0,0)]]
(Gv2( 0)) --->
[[(10,0)]]
(G( 0)) --->
[[(10,0),(0,0)]
[(0,0),(0,0)]]
(G(om_)) ---> gf(_0)
(eval(G(om_), om_=0)) --->
[[(10,0),(0,0)]
[(0,0),(0,0)]]
(Gv(om_)) ---> gf_view(_0)
(eval(Gv(om_), om_=0)) --->
[[(10,0),(0,0)]
[(0,0),(0,0)]]
-------------lazy assign 1 ------------------
(G(0)) --->
[[(2.3,3.14159),(0,0)]
[(0,0),(2.3,3.14159)]]
(G.singularity()) ---> tail/tail_view: min/smallest/max = -1 -1 8
... Order -1 =
[[(1,0),(0,0)]
[(0,0),(1,0)]]
... Order 0 =
[[(2.3,0),(0,0)]
[(0,0),(2.3,0)]]
... Order 1 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 2 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 3 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 4 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 5 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 6 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 7 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 8 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
-------------lazy assign 2 ------------------
(G(0)) --->
[[(0.151719,-0.207234),(0,0)]
[(0,0),(0.151719,-0.207234)]]
(G.singularity()) ---> tail/tail_view: min/smallest/max = -1 1 8
... Order -1 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 0 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 1 =
[[(1,0),(0,0)]
[(0,0),(1,0)]]
... Order 2 =
[[(-2.3,0),(0,0)]
[(0,0),(-2.3,0)]]
... Order 3 =
[[(5.29,0),(0,0)]
[(0,0),(5.29,0)]]
... Order 4 =
[[(-12.167,0),(0,0)]
[(0,0),(-12.167,0)]]
... Order 5 =
[[(27.9841,0),(0,0)]
[(0,0),(27.9841,0)]]
... Order 6 =
[[(-64.3634,0),(0,0)]
[(0,0),(-64.3634,0)]]
... Order 7 =
[[(148.036,0),(0,0)]
[(0,0),(148.036,0)]]
... Order 8 =
[[(-340.483,0),(0,0)]
[(0,0),(-340.483,0)]]
(inverse(G.singularity())) ---> tail/tail_view: min/smallest/max = -1 -1 6
... Order -1 =
[[(1,0),(0,0)]
[(0,0),(1,0)]]
... Order 0 =
[[(2.3,0),(0,0)]
[(0,0),(2.3,0)]]
... Order 1 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 2 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 3 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 4 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 5 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
... Order 6 =
[[(0,0),(0,0)]
[(0,0),(0,0)]]
----------------- 3 --------------------
(Gv(om_)) ---> gf_view(_0)
(eval(Gv(om_), om_=0)) --->
[[(0.151719,-0.207234),(0,0)]
[(0,0),(0.151719,-0.207234)]]
(t.order_min()) ---> -1
(t( 2)) --->
[[(-2.3,0),(0,0)]
[(0,0),(-2.3,0)]]
(Gv2.singularity()( 2)) --->
[[(-2.3,0)]]
(G( 0)) --->
[[(0.151719,-0.207234),(0,0)]
[(0,0),(0.151719,-0.207234)]]
(Gc( 0)) --->
[[(0.151719,-0.207234),(0,0)]
[(0,0),(0.151719,-0.207234)]]
----------------- 4 --------------------
(density(G3)) --->
[[1.81775,0]
[0,1.81775]]
(G( 0)) --->
[[(0.151719,-0.207234),(0,0)]
[(0,0),(0.151719,-0.207234)]]
(G.singularity()(2)) --->
[[(-2.3,0),(0,0)]
[(0,0),(-2.3,0)]]
(( G.singularity() + G.singularity() ) (2)) --->
[[(-4.6,0),(0,0)]
[(0,0),(-4.6,0)]]
(( G.singularity() * G.singularity() ) (4)) --->
[[(15.87,0),(0,0)]
[(0,0),(15.87,0)]]
(t(1)) --->
[[(1,0),(0,0)]
[(0,0),(1,0)]]