mirror of
https://github.com/triqs/dft_tools
synced 2024-11-01 11:43:47 +01:00
0a1285405c
- Add Fourier for lattice. - Add regular_bz_mesh, cyclic_lattice, and their FFT. - rm freq_infty. - The gf can now be evaluated on a tail_view, which result in composing the tail. - Fix the following issue : g(om_) << g(om_ +1) will recompose the tail correctly. - TODO : TEST THIS NEW FEATURE IN DETAIL. - Work on singularity for G(x, omega) - Separate the factory for singularity from the data factory in gf. - overload assign_from_functoin (renamed). - Fix singularity_t and co in the gf (const issue). - Clean tail, add tail_const_view - add m_tail for x -> tail on any mesh - test curry + fourier works on k
184 lines
3.1 KiB
Plaintext
184 lines
3.1 KiB
Plaintext
(G( 0)) --->
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
|
|
(Gv( 0)) --->
|
|
[[(20,0),(0,0)]
|
|
[(0,0),(20,0)]]
|
|
|
|
(G( 0)) --->
|
|
[[(20,0),(0,0)]
|
|
[(0,0),(20,0)]]
|
|
|
|
(Gv2( 0)) --->
|
|
[[(0,0)]]
|
|
|
|
(Gv2( 0)) --->
|
|
[[(10,0)]]
|
|
|
|
(G( 0)) --->
|
|
[[(10,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
|
|
(G(om_)) ---> gf(_0)
|
|
|
|
(eval(G(om_), om_=0)) --->
|
|
[[(10,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
|
|
(Gv(om_)) ---> gf_view(_0)
|
|
|
|
(eval(Gv(om_), om_=0)) --->
|
|
[[(10,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
|
|
-------------lazy assign 1 ------------------
|
|
(G(0)) --->
|
|
[[(2.3,3.14159),(0,0)]
|
|
[(0,0),(2.3,3.14159)]]
|
|
|
|
(G.singularity()) ---> tail/tail_view: min/smallest/max = -1 -1 8
|
|
... Order -1 =
|
|
[[(1,0),(0,0)]
|
|
[(0,0),(1,0)]]
|
|
... Order 0 =
|
|
[[(2.3,0),(0,0)]
|
|
[(0,0),(2.3,0)]]
|
|
... Order 1 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 2 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 3 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 4 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 5 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 6 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 7 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 8 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
|
|
-------------lazy assign 2 ------------------
|
|
(G(0)) --->
|
|
[[(0.151719,-0.207234),(0,0)]
|
|
[(0,0),(0.151719,-0.207234)]]
|
|
|
|
(G.singularity()) ---> tail/tail_view: min/smallest/max = -1 1 8
|
|
... Order -1 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 0 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 1 =
|
|
[[(1,0),(0,0)]
|
|
[(0,0),(1,0)]]
|
|
... Order 2 =
|
|
[[(-2.3,0),(0,0)]
|
|
[(0,0),(-2.3,0)]]
|
|
... Order 3 =
|
|
[[(5.29,0),(0,0)]
|
|
[(0,0),(5.29,0)]]
|
|
... Order 4 =
|
|
[[(-12.167,0),(0,0)]
|
|
[(0,0),(-12.167,0)]]
|
|
... Order 5 =
|
|
[[(27.9841,0),(0,0)]
|
|
[(0,0),(27.9841,0)]]
|
|
... Order 6 =
|
|
[[(-64.3634,0),(0,0)]
|
|
[(0,0),(-64.3634,0)]]
|
|
... Order 7 =
|
|
[[(148.036,0),(0,0)]
|
|
[(0,0),(148.036,0)]]
|
|
... Order 8 =
|
|
[[(-340.483,0),(0,0)]
|
|
[(0,0),(-340.483,0)]]
|
|
|
|
(inverse(G.singularity())) ---> tail/tail_view: min/smallest/max = -1 -1 6
|
|
... Order -1 =
|
|
[[(1,0),(0,0)]
|
|
[(0,0),(1,0)]]
|
|
... Order 0 =
|
|
[[(2.3,0),(0,0)]
|
|
[(0,0),(2.3,0)]]
|
|
... Order 1 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 2 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 3 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 4 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 5 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
... Order 6 =
|
|
[[(0,0),(0,0)]
|
|
[(0,0),(0,0)]]
|
|
|
|
----------------- 3 --------------------
|
|
(Gv(om_)) ---> gf_view(_0)
|
|
|
|
(eval(Gv(om_), om_=0)) --->
|
|
[[(0.151719,-0.207234),(0,0)]
|
|
[(0,0),(0.151719,-0.207234)]]
|
|
|
|
(t.order_min()) ---> -1
|
|
|
|
(t( 2)) --->
|
|
[[(-2.3,0),(0,0)]
|
|
[(0,0),(-2.3,0)]]
|
|
|
|
(Gv2.singularity()( 2)) --->
|
|
[[(-2.3,0)]]
|
|
|
|
(G( 0)) --->
|
|
[[(0.151719,-0.207234),(0,0)]
|
|
[(0,0),(0.151719,-0.207234)]]
|
|
|
|
(Gc( 0)) --->
|
|
[[(0.151719,-0.207234),(0,0)]
|
|
[(0,0),(0.151719,-0.207234)]]
|
|
|
|
----------------- 4 --------------------
|
|
(density(G3)) --->
|
|
[[1.81775,0]
|
|
[0,1.81775]]
|
|
|
|
(G( 0)) --->
|
|
[[(0.151719,-0.207234),(0,0)]
|
|
[(0,0),(0.151719,-0.207234)]]
|
|
|
|
(G.singularity()(2)) --->
|
|
[[(-2.3,0),(0,0)]
|
|
[(0,0),(-2.3,0)]]
|
|
|
|
(( G.singularity() + G.singularity() ) (2)) --->
|
|
[[(-4.6,0),(0,0)]
|
|
[(0,0),(-4.6,0)]]
|
|
|
|
(( G.singularity() * G.singularity() ) (4)) --->
|
|
[[(15.87,0),(0,0)]
|
|
[(0,0),(15.87,0)]]
|
|
|
|
(t(1)) --->
|
|
[[(1,0),(0,0)]
|
|
[(0,0),(1,0)]]
|
|
|